Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
from cliport.tasks.task import Task | |
from cliport.utils import utils | |
import pybullet as p | |
class PackingBoxesPairs(Task): | |
"""Tightly pack all the boxes of two specified colors inside the brown box.""" | |
def __init__(self): | |
super().__init__() | |
self.max_steps = 20 | |
self.lang_template = "pack all the {colors} blocks into the brown box" # should have called it boxes :( | |
self.task_completed_desc = "done packing blocks." | |
# Tight z-bound (0.0525) to discourage stuffing everything into the brown box | |
self.zone_bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.0525]]) | |
self.additional_reset() | |
def reset(self, env): | |
super().reset(env) | |
# Add container box. | |
zone_size = self.get_random_size(0.05, 0.3, 0.05, 0.3, 0.05, 0.05) | |
zone_pose = self.get_random_pose(env, zone_size) | |
container_template = 'container/container-template.urdf' | |
replace = {'DIM': zone_size, 'HALF': (zone_size[0] / 2, zone_size[1] / 2, zone_size[2] / 2)} | |
container_urdf = self.fill_template(container_template, replace) | |
env.add_object(container_urdf, zone_pose, 'fixed') | |
margin = 0.01 | |
min_object_dim = 0.05 | |
bboxes = [] | |
# Split container space with KD trees. | |
stack_size = np.array(zone_size) | |
stack_size[0] -= 0.01 | |
stack_size[1] -= 0.01 | |
root_size = (0.01, 0.01, 0) + tuple(stack_size) | |
root = utils.TreeNode(None, [], bbox=np.array(root_size)) | |
utils.KDTree(root, min_object_dim, margin, bboxes) | |
# select colors | |
all_colors, all_color_names = utils.get_colors(mode=self.mode) | |
selected_idx = np.random.choice(range(len(all_colors)), 2, replace=False) | |
relevant_color_names = [c for idx, c in enumerate(all_color_names) if idx in selected_idx] | |
distractor_colors = [c for idx, c in enumerate(all_color_names) if idx not in selected_idx] | |
pack_colors = [c for idx, c in enumerate(all_colors) if idx in selected_idx] | |
distractor_colors = [c for idx, c in enumerate(all_colors) if idx not in selected_idx] | |
# Add objects in container. | |
object_ids = [] | |
bboxes = np.array(bboxes) | |
object_template = 'box/box-template.urdf' | |
for bbox in bboxes: | |
size = bbox[3:] - bbox[:3] | |
position = size / 2. + bbox[:3] | |
position[0] += -zone_size[0] / 2 | |
position[1] += -zone_size[1] / 2 | |
pose = (position, (0, 0, 0, 1)) | |
pose = utils.multiply(zone_pose, pose) | |
urdf = self.fill_template(object_template, {'DIM': size}) | |
box_id = env.add_object(urdf, pose) | |
object_ids.append(box_id) | |
icolor = np.random.choice(range(len(pack_colors)), 1).squeeze() | |
p.changeVisualShape(box_id, -1, rgbaColor=pack_colors[icolor] + [1]) | |
# Randomly select object in box and save ground truth pose. | |
object_volumes = [] | |
true_poses = [] | |
for object_id in object_ids: | |
true_pose = p.getBasePositionAndOrientation(object_id) | |
object_size = p.getVisualShapeData(object_id)[0][3] | |
object_volumes.append(np.prod(np.array(object_size) * 100)) | |
pose = self.get_random_pose(env, object_size) | |
p.resetBasePositionAndOrientation(object_id, pose[0], pose[1]) | |
true_poses.append(true_pose) | |
# Add distractor objects | |
num_distractor_objects = 4 | |
distractor_bbox_idxs = np.random.choice(len(bboxes), num_distractor_objects) | |
for bbox_idx in distractor_bbox_idxs: | |
bbox = bboxes[bbox_idx] | |
size = bbox[3:] - bbox[:3] | |
position = size / 2. + bbox[:3] | |
position[0] += -zone_size[0] / 2 | |
position[1] += -zone_size[1] / 2 | |
pose = self.get_random_pose(env, size) | |
urdf = self.fill_template(object_template, {'DIM': size}) | |
box_id = env.add_object(urdf, pose) | |
icolor = np.random.choice(range(len(distractor_colors)), 1).squeeze() | |
if box_id: | |
p.changeVisualShape(box_id, -1, rgbaColor=distractor_colors[icolor] + [1]) | |
# Some scenes might contain just one relevant block that fits in the box. | |
if len(relevant_color_names) > 1: | |
relevant_desc = f'{relevant_color_names[0]} and {relevant_color_names[1]}' | |
else: | |
relevant_desc = f'{relevant_color_names[0]}' | |
# IMPORTANT: Specify (obj_pts, [(zone_pose, zone_size)]) for target `zone`. obj_pts is a dict | |
self.add_goal(objs=object_ids, matches=np.eye(len(object_ids)), targ_poses=true_poses, replace=False, | |
rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1) | |
self.lang_goals.append(self.lang_template.format( | |
colors=relevant_desc, | |
)) |