litagin's picture
Upload 11 files
d485dcb verified
raw
history blame
5.48 kB
import torch
import torch.nn as nn
class AsymmetricLoss(nn.Module):
def __init__(
self,
gamma_neg=4,
gamma_pos=1,
clip=0.05,
eps=1e-8,
disable_torch_grad_focal_loss=True,
):
super(AsymmetricLoss, self).__init__()
self.gamma_neg = gamma_neg
self.gamma_pos = gamma_pos
self.clip = clip
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
self.eps = eps
def forward(self, x, y):
""" "
Parameters
----------
x: input logits
y: targets (multi-label binarized vector)
"""
# Calculating Probabilities
x_sigmoid = torch.sigmoid(x)
xs_pos = x_sigmoid
xs_neg = 1 - x_sigmoid
# Asymmetric Clipping
if self.clip is not None and self.clip > 0:
xs_neg = (xs_neg + self.clip).clamp(max=1)
# Basic CE calculation
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
loss = los_pos + los_neg
# Asymmetric Focusing
if self.gamma_neg > 0 or self.gamma_pos > 0:
if self.disable_torch_grad_focal_loss:
torch.set_grad_enabled(False)
pt0 = xs_pos * y
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p
pt = pt0 + pt1
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
if self.disable_torch_grad_focal_loss:
torch.set_grad_enabled(True)
loss *= one_sided_w
return -loss.sum()
class AsymmetricLossOptimized(nn.Module):
"""Notice - optimized version, minimizes memory allocation and gpu uploading,
favors inplace operations"""
def __init__(
self,
gamma_neg=4,
gamma_pos=1,
clip=0.05,
eps=1e-8,
disable_torch_grad_focal_loss=False,
):
super(AsymmetricLossOptimized, self).__init__()
self.gamma_neg = gamma_neg
self.gamma_pos = gamma_pos
self.clip = clip
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
self.eps = eps
# prevent memory allocation and gpu uploading every iteration, and encourages inplace operations
self.targets = self.anti_targets = self.xs_pos = self.xs_neg = (
self.asymmetric_w
) = self.loss = None
def forward(self, x, y):
""" "
Parameters
----------
x: input logits
y: targets (multi-label binarized vector)
"""
self.targets = y
self.anti_targets = 1 - y
# Calculating Probabilities
self.xs_pos = torch.sigmoid(x)
self.xs_neg = 1.0 - self.xs_pos
# Asymmetric Clipping
if self.clip is not None and self.clip > 0:
self.xs_neg.add_(self.clip).clamp_(max=1)
# Basic CE calculation
self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps))
self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps)))
# Asymmetric Focusing
if self.gamma_neg > 0 or self.gamma_pos > 0:
if self.disable_torch_grad_focal_loss:
torch.set_grad_enabled(False)
self.xs_pos = self.xs_pos * self.targets
self.xs_neg = self.xs_neg * self.anti_targets
self.asymmetric_w = torch.pow(
1 - self.xs_pos - self.xs_neg,
self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets,
)
if self.disable_torch_grad_focal_loss:
torch.set_grad_enabled(True)
self.loss *= self.asymmetric_w
return -self.loss.sum()
class ASLSingleLabel(nn.Module):
"""
This loss is intended for single-label classification problems
"""
def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction="mean"):
super(ASLSingleLabel, self).__init__()
self.eps = eps
self.logsoftmax = nn.LogSoftmax(dim=-1)
self.targets_classes = []
self.gamma_pos = gamma_pos
self.gamma_neg = gamma_neg
self.reduction = reduction
def forward(self, inputs, target):
"""
"input" dimensions: - (batch_size,number_classes)
"target" dimensions: - (batch_size)
"""
num_classes = inputs.size()[-1]
log_preds = self.logsoftmax(inputs)
self.targets_classes = torch.zeros_like(inputs).scatter_(
1, target.long().unsqueeze(1), 1
)
# ASL weights
targets = self.targets_classes
anti_targets = 1 - targets
xs_pos = torch.exp(log_preds)
xs_neg = 1 - xs_pos
xs_pos = xs_pos * targets
xs_neg = xs_neg * anti_targets
asymmetric_w = torch.pow(
1 - xs_pos - xs_neg,
self.gamma_pos * targets + self.gamma_neg * anti_targets,
)
log_preds = log_preds * asymmetric_w
if self.eps > 0: # label smoothing
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(
self.eps / num_classes
)
# loss calculation
loss = -self.targets_classes.mul(log_preds)
loss = loss.sum(dim=-1)
if self.reduction == "mean":
loss = loss.mean()
return loss