Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/CTRL/Transformer-XL/XLNet) | |
""" | |
import argparse | |
import inspect | |
import logging | |
from dataclasses import dataclass, field | |
from typing import Tuple, List, Optional, Union | |
import numpy as np | |
import torch | |
import os | |
normal_repr = torch.Tensor.__repr__ | |
torch.Tensor.__repr__ = lambda self: f"{self.shape}_{normal_repr(self)}" | |
from transformers import ( | |
AutoTokenizer, | |
BloomForCausalLM, | |
BloomTokenizerFast, | |
CTRLLMHeadModel, | |
CTRLTokenizer, | |
GenerationMixin, | |
GPT2LMHeadModel, | |
GPT2Tokenizer, | |
GPTJForCausalLM, | |
HfArgumentParser, | |
LlamaForCausalLM, | |
LlamaTokenizer, | |
OpenAIGPTLMHeadModel, | |
OpenAIGPTTokenizer, | |
OPTForCausalLM, | |
TransfoXLLMHeadModel, | |
TransfoXLTokenizer, | |
XLMTokenizer, | |
XLMWithLMHeadModel, | |
XLNetLMHeadModel, | |
XLNetTokenizer, | |
TextStreamer, | |
) | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from unlimiformer import Unlimiformer | |
from random_training_unlimiformer import RandomTrainingUnlimiformer | |
class UnlimiformerArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
test_unlimiformer: Optional[bool] = field( | |
default=False, | |
metadata={ | |
"help": "whether to use KNN." | |
}, | |
) | |
unlimiformer_verbose: Optional[bool] = field( | |
default=False, | |
metadata={ | |
"help": "whether to print KNN intermediate predictions (mostly for debugging)." | |
}, | |
) | |
layer_begin: Optional[int] = field( | |
default=0, | |
metadata={"help": "The layer to begin applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. " | |
"By default, it will be applied to all layers: [0:None]]"}, | |
) | |
layer_end: Optional[int] = field( | |
default=None, | |
metadata={"help": "The layer to end applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. " | |
"By default, it will be applied to all layers: [0:None]]"}, | |
) | |
unlimiformer_chunk_overlap: Optional[float] = field( | |
default=0.5, | |
metadata={"help": "The fraction of overlap between input chunks"}, | |
) | |
unlimiformer_chunk_size: Optional[int] = field( | |
default=None, | |
metadata={"help": "The size of each input chunk"}, | |
) | |
unlimiformer_head_num: Optional[int] = field( | |
default=None, | |
metadata={"help": "The head to apply KNN to (if None, apply to all heads)"}, | |
) | |
unlimiformer_exclude: Optional[bool] = field( | |
default=False, | |
metadata={ | |
"help": "If True, prioritize the inputs that are **not** in the standard attention window." | |
}, | |
) | |
random_unlimiformer_training: Optional[bool] = field( | |
default=False, | |
) | |
unlimiformer_training: Optional[bool] = field( | |
default=False, | |
) | |
index_devices: Optional[List[int]] = field( | |
default_factory=lambda: (0,), | |
) | |
datastore_device: Optional[int] = field( | |
default=0, | |
) | |
use_datastore: Optional[bool] = field(default=True) | |
flat_index: Optional[bool] = field(default=True) | |
test_datastore: Optional[bool] = field(default=False) | |
reconstruct_embeddings: Optional[bool] = field(default=False) | |
gpu_datastore: Optional[bool] = field(default=True) | |
gpu_index: Optional[bool] = field(default=True) | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger = logging.getLogger(__name__) | |
MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop | |
MODEL_CLASSES = { | |
"gpt2": (GPT2LMHeadModel, GPT2Tokenizer), | |
"ctrl": (CTRLLMHeadModel, CTRLTokenizer), | |
"openai-gpt": (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), | |
"xlnet": (XLNetLMHeadModel, XLNetTokenizer), | |
"transfo-xl": (TransfoXLLMHeadModel, TransfoXLTokenizer), | |
"xlm": (XLMWithLMHeadModel, XLMTokenizer), | |
"gptj": (GPTJForCausalLM, AutoTokenizer), | |
"bloom": (BloomForCausalLM, BloomTokenizerFast), | |
"llama": (LlamaForCausalLM, LlamaTokenizer), | |
"opt": (OPTForCausalLM, GPT2Tokenizer), | |
} | |
# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia | |
# in https://github.com/rusiaaman/XLNet-gen#methodology | |
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e | |
PREFIX = """In 1991, the remains of Russian Tsar Nicholas II and his family | |
(except for Alexei and Maria) are discovered. | |
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the | |
remainder of the story. 1883 Western Siberia, | |
a young Grigori Rasputin is asked by his father and a group of men to perform magic. | |
Rasputin has a vision and denounces one of the men as a horse thief. Although his | |
father initially slaps him for making such an accusation, Rasputin watches as the | |
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of | |
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, | |
with people, even a bishop, begging for his blessing. <eod> </s> <eos>""" | |
def set_seed(args): | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
# | |
# Functions to prepare models' input | |
# | |
def prepare_ctrl_input(args, _, tokenizer, prompt_text): | |
if args.temperature > 0.7: | |
logger.info("CTRL typically works better with lower temperatures (and lower top_k).") | |
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False) | |
if not any(encoded_prompt[0] == x for x in tokenizer.control_codes.values()): | |
logger.info("WARNING! You are not starting your generation from a control code so you won't get good results") | |
return prompt_text | |
def prepare_xlm_input(args, model, tokenizer, prompt_text): | |
# kwargs = {"language": None, "mask_token_id": None} | |
# Set the language | |
use_lang_emb = hasattr(model.config, "use_lang_emb") and model.config.use_lang_emb | |
if hasattr(model.config, "lang2id") and use_lang_emb: | |
available_languages = model.config.lang2id.keys() | |
if args.xlm_language in available_languages: | |
language = args.xlm_language | |
else: | |
language = None | |
while language not in available_languages: | |
language = input("Using XLM. Select language in " + str(list(available_languages)) + " >>> ") | |
model.config.lang_id = model.config.lang2id[language] | |
# kwargs["language"] = tokenizer.lang2id[language] | |
# TODO fix mask_token_id setup when configurations will be synchronized between models and tokenizers | |
# XLM masked-language modeling (MLM) models need masked token | |
# is_xlm_mlm = "mlm" in args.model_name_or_path | |
# if is_xlm_mlm: | |
# kwargs["mask_token_id"] = tokenizer.mask_token_id | |
return prompt_text | |
def prepare_xlnet_input(args, _, tokenizer, prompt_text): | |
prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX | |
prompt_text = prefix + prompt_text | |
return prompt_text | |
def prepare_transfoxl_input(args, _, tokenizer, prompt_text): | |
prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX | |
prompt_text = prefix + prompt_text | |
return prompt_text | |
PREPROCESSING_FUNCTIONS = { | |
"ctrl": prepare_ctrl_input, | |
"xlm": prepare_xlm_input, | |
"xlnet": prepare_xlnet_input, | |
"transfo-xl": prepare_transfoxl_input, | |
} | |
def adjust_length_to_model(length, max_sequence_length): | |
if length < 0 and max_sequence_length > 0: | |
length = max_sequence_length | |
elif 0 < max_sequence_length < length: | |
length = max_sequence_length # No generation bigger than model size | |
elif length < 0: | |
length = MAX_LENGTH # avoid infinite loop | |
return length | |
def sparse_model_config(model_config): | |
embedding_size = None | |
if hasattr(model_config, "hidden_size"): | |
embedding_size = model_config.hidden_size | |
elif hasattr(model_config, "n_embed"): | |
embedding_size = model_config.n_embed | |
elif hasattr(model_config, "n_embd"): | |
embedding_size = model_config.n_embd | |
num_head = None | |
if hasattr(model_config, "num_attention_heads"): | |
num_head = model_config.num_attention_heads | |
elif hasattr(model_config, "n_head"): | |
num_head = model_config.n_head | |
if embedding_size is None or num_head is None or num_head == 0: | |
raise ValueError("Check the model config") | |
num_embedding_size_per_head = int(embedding_size / num_head) | |
if hasattr(model_config, "n_layer"): | |
num_layer = model_config.n_layer | |
elif hasattr(model_config, "num_hidden_layers"): | |
num_layer = model_config.num_hidden_layers | |
else: | |
raise ValueError("Number of hidden layers couldn't be determined from the model config") | |
return num_layer, num_head, num_embedding_size_per_head | |
def generate_past_key_values(model, batch_size, seq_len): | |
num_block_layers, num_attention_heads, num_embedding_size_per_head = sparse_model_config(model.config) | |
if model.config.model_type == "bloom": | |
past_key_values = tuple( | |
( | |
torch.empty(int(num_attention_heads * batch_size), num_embedding_size_per_head, seq_len) | |
.to(model.dtype) | |
.to(model.device), | |
torch.empty(int(num_attention_heads * batch_size), seq_len, num_embedding_size_per_head) | |
.to(model.dtype) | |
.to(model.device), | |
) | |
for _ in range(num_block_layers) | |
) | |
else: | |
past_key_values = tuple( | |
( | |
torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head) | |
.to(model.dtype) | |
.to(model.device), | |
torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head) | |
.to(model.dtype) | |
.to(model.device), | |
) | |
for _ in range(num_block_layers) | |
) | |
return past_key_values | |
def prepare_jit_inputs(inputs, model, tokenizer): | |
batch_size = len(inputs) | |
dummy_input = tokenizer.batch_encode_plus(inputs, return_tensors="pt") | |
dummy_input = dummy_input.to(model.device) | |
if model.config.use_cache: | |
dummy_input["past_key_values"] = generate_past_key_values(model, batch_size, 1) | |
dummy_input["attention_mask"] = torch.cat( | |
[ | |
torch.zeros(dummy_input["attention_mask"].shape[0], 1) | |
.to(dummy_input["attention_mask"].dtype) | |
.to(model.device), | |
dummy_input["attention_mask"], | |
], | |
-1, | |
) | |
return dummy_input | |
class _ModelFallbackWrapper(GenerationMixin): | |
__slots__ = ("_optimized", "_default") | |
def __init__(self, optimized, default): | |
self._optimized = optimized | |
self._default = default | |
def __call__(self, *args, **kwargs): | |
if kwargs["past_key_values"] is None and self._default.config.use_cache: | |
kwargs["past_key_values"] = generate_past_key_values(self._default, kwargs["input_ids"].shape[0], 0) | |
kwargs.pop("position_ids", None) | |
for k in list(kwargs.keys()): | |
if kwargs[k] is None or isinstance(kwargs[k], bool): | |
kwargs.pop(k) | |
outputs = self._optimized(**kwargs) | |
lm_logits = outputs[0] | |
past_key_values = outputs[1] | |
fixed_output = CausalLMOutputWithPast( | |
loss=None, | |
logits=lm_logits, | |
past_key_values=past_key_values, | |
hidden_states=None, | |
attentions=None, | |
) | |
return fixed_output | |
def __getattr__(self, item): | |
return getattr(self._default, item) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, inputs_embeds=None, use_cache=None, **kwargs | |
): | |
return self._default.prepare_inputs_for_generation( | |
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, **kwargs | |
) | |
def _reorder_cache( | |
self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or | |
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
""" | |
return self._default._reorder_cache(past_key_values, beam_idx) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_type", | |
default=None, | |
type=str, | |
required=True, | |
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CLASSES.keys()), | |
) | |
parser.add_argument("--prompt", type=str, default="") | |
parser.add_argument("--length", type=int, default=100) | |
parser.add_argument("--num_hidden_layers", type=int, default=None) | |
parser.add_argument("--stop_token", type=str, default=None, help="Token at which text generation is stopped") | |
parser.add_argument( | |
"--temperature", | |
type=float, | |
default=1.0, | |
help="temperature of 1.0 has no effect, lower tend toward greedy sampling", | |
) | |
parser.add_argument( | |
"--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2" | |
) | |
parser.add_argument("--k", type=int, default=0) | |
parser.add_argument("--p", type=float, default=0.9) | |
parser.add_argument("--prefix", type=str, default="", help="Text added prior to input.") | |
parser.add_argument("--suffix", type=str, default="", help="Text added after the input.") | |
parser.add_argument("--padding_text", type=str, default="", help="Deprecated, the use of `--prefix` is preferred.") | |
parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.") | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") | |
parser.add_argument("--stream_output", action="store_true") | |
parser.add_argument("--num_return_sequences", type=int, default=1, help="The number of samples to generate.") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument("--jit", action="store_true", help="Whether or not to use jit trace to accelerate inference") | |
# args = parser.parse_args() | |
args, unknown_args = parser.parse_known_args() | |
hf_parser = HfArgumentParser(UnlimiformerArguments) | |
unlimiformer_args, unknown_unlimiformer_args = hf_parser.parse_known_args() | |
if len(set(unknown_args) & set(unknown_unlimiformer_args)) > 0: | |
raise ValueError(f"Unknown arguments detected: {set(unknown_args) & set(unknown_unlimiformer_args)}") | |
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
logger.warning(f"device: {args.device}, n_gpu: {args.n_gpu}, 16-bits training: {args.fp16}") | |
set_seed(args) | |
# Initialize the model and tokenizer | |
try: | |
args.model_type = args.model_type.lower() | |
model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
except KeyError: | |
raise KeyError("the model {} you specified is not supported. You are welcome to add it and open a PR :)") | |
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model_kwargs = {} | |
if args.num_hidden_layers is not None: | |
model_kwargs["num_hidden_layers"] = args.num_hidden_layers | |
model = model_class.from_pretrained(args.model_name_or_path, **model_kwargs) | |
if args.fp16: | |
model.half() | |
model.to(args.device) | |
max_seq_length = getattr(model.config, "max_position_embeddings", 0) | |
args.length = adjust_length_to_model(args.length, max_sequence_length=max_seq_length) | |
logger.info(args) | |
if unlimiformer_args.test_unlimiformer: | |
unlimiformer_kwargs = { | |
'layer_begin': unlimiformer_args.layer_begin, | |
'layer_end': unlimiformer_args.layer_end, | |
'unlimiformer_head_num': unlimiformer_args.unlimiformer_head_num, | |
'exclude_attention': unlimiformer_args.unlimiformer_exclude, | |
'chunk_overlap': unlimiformer_args.unlimiformer_chunk_overlap, | |
'model_encoder_max_len': unlimiformer_args.unlimiformer_chunk_size, | |
'verbose': unlimiformer_args.unlimiformer_verbose, 'tokenizer': tokenizer, | |
'unlimiformer_training': unlimiformer_args.unlimiformer_training, | |
'use_datastore': unlimiformer_args.use_datastore, | |
'flat_index': unlimiformer_args.flat_index, | |
'test_datastore': unlimiformer_args.test_datastore, | |
'reconstruct_embeddings': unlimiformer_args.reconstruct_embeddings, | |
'gpu_datastore': unlimiformer_args.gpu_datastore, | |
'gpu_index': unlimiformer_args.gpu_index, | |
'index_devices': unlimiformer_args.index_devices, | |
'datastore_device': unlimiformer_args.datastore_device, | |
} | |
if unlimiformer_args.random_unlimiformer_training: | |
model = RandomTrainingUnlimiformer.convert_model(model, **unlimiformer_kwargs) | |
else: | |
model = Unlimiformer.convert_model(model, **unlimiformer_kwargs) | |
prompt_text = args.prompt if args.prompt else input("Model prompt >>> ") | |
# Check if prompt_text is a valid file name: | |
if os.path.exists(prompt_text): | |
with open(prompt_text, "r") as f: | |
prompt_text = f.read() | |
# Different models need different input formatting and/or extra arguments | |
requires_preprocessing = args.model_type in PREPROCESSING_FUNCTIONS.keys() | |
if requires_preprocessing: | |
prepare_input = PREPROCESSING_FUNCTIONS.get(args.model_type) | |
preprocessed_prompt_text = prepare_input(args, model, tokenizer, prompt_text) | |
if model.__class__.__name__ in ["TransfoXLLMHeadModel"]: | |
tokenizer_kwargs = {"add_space_before_punct_symbol": True} | |
else: | |
tokenizer_kwargs = {} | |
encoded_prompt = tokenizer.encode( | |
preprocessed_prompt_text, add_special_tokens=False, return_tensors="pt", **tokenizer_kwargs | |
) | |
else: | |
# prefix = args.prefix if args.prefix else args.padding_text | |
prompt_text = f'{args.prefix}{prompt_text}{args.suffix}' | |
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt") | |
if not unlimiformer_args.test_unlimiformer: | |
encoded_prompt = encoded_prompt[:, -2048:] | |
encoded_prompt = encoded_prompt.to(args.device) | |
if encoded_prompt.size()[-1] == 0: | |
input_ids = None | |
else: | |
input_ids = encoded_prompt | |
if args.jit: | |
jit_input_texts = ["enable jit"] | |
jit_inputs = prepare_jit_inputs(jit_input_texts, model, tokenizer) | |
torch._C._jit_set_texpr_fuser_enabled(False) | |
model.config.return_dict = False | |
if hasattr(model, "forward"): | |
sig = inspect.signature(model.forward) | |
else: | |
sig = inspect.signature(model.__call__) | |
jit_inputs = tuple(jit_inputs[key] for key in sig.parameters if jit_inputs.get(key, None) is not None) | |
traced_model = torch.jit.trace(model, jit_inputs, strict=False) | |
traced_model = torch.jit.freeze(traced_model.eval()) | |
traced_model(*jit_inputs) | |
traced_model(*jit_inputs) | |
model = _ModelFallbackWrapper(traced_model, model) | |
model.eval() | |
output_sequences = model.generate( | |
input_ids=input_ids, | |
# max_length=args.length + len(encoded_prompt[0]), | |
max_new_tokens=args.length, | |
temperature=args.temperature, | |
top_k=args.k, | |
top_p=args.p, | |
repetition_penalty=args.repetition_penalty, | |
do_sample=True, | |
num_return_sequences=args.num_return_sequences, | |
streamer=TextStreamer(tokenizer, skip_prompt=True) if args.stream_output else None, | |
) | |
# Remove the batch dimension when returning multiple sequences | |
if len(output_sequences.shape) > 2: | |
output_sequences.squeeze_() | |
generated_sequences = [] | |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences): | |
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} (input length: {input_ids.shape[-1]}) ===") | |
generated_sequence = generated_sequence.tolist() | |
# generated_sequence = generated_sequence[len(encoded_prompt[0]):] + tokenizer.encode(' <end_of_prompt> ') + generated_sequence[:len(encoded_prompt[0])] | |
# Decode text | |
# text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) | |
prompt_length = min(input_ids.shape[-1], model.unlimiformer.window_size()) if unlimiformer_args.test_unlimiformer else input_ids.shape[-1] | |
completion = tokenizer.decode(generated_sequence[prompt_length:]) | |
# Remove all text after the stop token | |
# text = text[: text.find(args.stop_token) if args.stop_token else None] | |
# Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing | |
total_sequence = ( | |
# prompt_text + | |
'|||' + completion | |
) | |
generated_sequences.append(total_sequence) | |
print(total_sequence) | |
return generated_sequences | |
if __name__ == "__main__": | |
main() | |