PCB-DETECT / app.py
llzzyy233's picture
Update app.py
e466aa6 verified
raw
history blame
1.24 kB
import gradio as gr
import torch
from PIL import Image
from ultralytics import YOLO
model = YOLO(r'pcb-best.pt')
def predict(img, conf, iou):
results = model.predict(img, conf=conf, iou=iou)
for i, r in enumerate(results):
# Plot results image
im_bgr = r.plot() # BGR-order numpy array
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
# Show results to screen (in supported environments)
return im_rgb
base_conf, base_iou = 0.25, 0.45
title = "基于YOLO-V8的PCB电路板缺陷检测"
des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测"
interface = gr.Interface(inputs=['image',gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)],
outputs=["image"], fn=predict, title=title, description=des, examples=[["example1.jpg", base_conf, base_iou],
["example2.jpg", base_conf, base_iou],
["example3.jpg", base_conf, base_iou]])
interface.launch()