File size: 11,738 Bytes
41c3554
912f3cb
9f9e0f1
db7a151
8379514
0e97c1f
9b9dfb3
 
a21b264
efd9487
2cc6057
a21b264
b2a401d
a21b264
0e97c1f
372c5e7
efd9487
 
 
372c5e7
efd9487
 
fe71d78
372c5e7
efd9487
372c5e7
 
 
92e609e
efd9487
372c5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3626e
efd9487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e7bb5
372c5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4b815a
fa5e64a
b2a401d
 
efd9487
b2a401d
c2ec36e
b2a401d
397603a
b2a401d
 
c2ec36e
 
397603a
9b9dfb3
 
9dbc598
 
a21b264
9dbc598
 
 
 
 
 
 
a21b264
 
9dbc598
efd9487
a21b264
9dbc598
efd9487
c4b815a
9b9dfb3
4e3626e
cc8ee0f
 
9b9dfb3
0908597
92e609e
0908597
9dbc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908597
 
 
 
efd9487
0908597
 
2c245c6
c2ec36e
c4b815a
0908597
 
9dbc598
 
 
 
 
 
 
 
 
0908597
 
7c1aeac
 
db3de66
7c1aeac
91e6d60
5f7526f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import gradio as gr
from transformers import pipeline
import feedparser
from datetime import datetime, timedelta
import pytz
from bs4 import BeautifulSoup
import hashlib
import threading
import logging
import requests

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global settings
OPENROUTER_API_KEY = "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"
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"

SUMMARIZER_MODELS = {
    "Default (facebook/bart-large-cnn)": "local_bart",
    "Free Model (distilbart-cnn-6-6)": "local_distilbart",
    "OpenRouter (Claude-3)": "anthropic/claude-3-haiku"
}

CACHE_SIZE = 500
RSS_FETCH_INTERVAL = timedelta(hours=8)
ARTICLE_LIMIT = 5

# Updated categories and news sources
CATEGORIES = ["Technology", "Business", "Science", "World News", "Sports", "Health"]
NEWS_SOURCES = {
    "Technology": {
        "TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Technology.xml",
        "reutersagency": "https://www.reutersagency.com/feed/?best-topics=tech&post_type=best",
        "alarabiya arabic": "https://www.alarabiya.net/feed/rss2/ar/technology.xml",
    },
    "Business": {
        "TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Business.xml",
        "reutersagency": "https://www.reutersagency.com/feed/?best-topics=business-finance&post_type=best",
        "alwatanvoice arabic": "https://feeds.alwatanvoice.com/ar/business.xml",
    },
    "Science": {
        "TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Science.xml"
    },
    "World News": {
        "TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/World.xml",
        "BBC": "http://feeds.bbci.co.uk/news/world/rss.xml",
        "CNN": "http://rss.cnn.com/rss/edition_world.rss",
        "reutersagency": "https://www.reutersagency.com/feed/?taxonomy=best-regions&post_type=best",
        "france24 arabic": "https://www.france24.com/ar/rss",
        "aljazera arabic": "https://www.aljazeera.net/aljazeerarss/a7c186be-1baa-4bd4-9d80-a84db769f779/73d0e1b4-532f-45ef-b135-bfdff8b8cab9",
    },
    "Sports": {
        "TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Sports.xml",
        "reutersagency": "https://www.reutersagency.com/feed/?best-topics=sports&post_type=best",
        "france24 arabic": "https://www.france24.com/ar/%D8%B1%D9%8A%D8%A7%D8%B6%D8%A9/rss",
    },
    "Health": {
        "TheNewYorkTimes": "https://rss.nytimes.com/services/xml/rss/nyt/Health.xml",
        "politico": "http://rss.politico.com/healthcare.xml",
        "reutersagency": "https://www.reutersagency.com/feed/?best-topics=health&post_type=best"
    },
}

class NewsCache:
    def __init__(self, size):
        self.cache = {}
        self.size = size
        self.lock = threading.Lock()

    def get(self, key):
        with self.lock:
            return self.cache.get(key)

    def set(self, key, value):
        with self.lock:
            if len(self.cache) >= self.size:
                oldest_key = next(iter(self.cache))
                del self.cache[oldest_key]
            self.cache[key] = value

cache = NewsCache(CACHE_SIZE)

def detect_language(text):
    """Detect if the text is primarily Arabic"""
    if not text:
        return False
    arabic_chars = len([c for c in text if '\u0600' <= c <= '\u06FF'])
    return (arabic_chars / len(text)) > 0.5

def summarize_text(text, model_name):
    try:
        content_hash = hashlib.md5(text.encode()).hexdigest()
        cached_summary = cache.get(content_hash)
        
        if cached_summary:
            logger.info("Using cached summary")
            return cached_summary

        is_arabic = detect_language(text)
        
        if is_arabic or model_name == "OpenRouter (Claude-3)":
            logger.info("Using OpenRouter for summarization")
            headers = {
                "Authorization": f"Bearer {OPENROUTER_API_KEY}",
                "HTTP-Referer": "https://localhost:7860",  # Replace with your actual domain
                "X-Title": "News Summarizer App",
                "Content-Type": "application/json"
            }
            
            prompt = f"Please provide a concise summary of the following news article in the same language as the original text. Keep the summary brief and focused on key points:\n\n{text}"
            
            data = {
                "model": "anthropic/claude-3-haiku",
                "messages": [{"role": "user", "content": prompt}],
                "max_tokens": 150
            }
            
            response = requests.post(OPENROUTER_API_URL, headers=headers, json=data)
            response.raise_for_status()
            
            summary = response.json()["choices"][0]["message"]["content"]
        else:
            logger.info("Using local model for summarization")
            model_path = "facebook/bart-large-cnn" if model_name == "Default (facebook/bart-large-cnn)" else "sshleifer/distilbart-cnn-6-6"
            summarizer = pipeline("summarization", model=model_path, device=-1)
            result = summarizer(text, max_length=120, min_length=40, truncation=True)
            summary = result[0]['summary_text']
        
        cache.set(content_hash, summary)
        return summary
    except Exception as e:
        logger.error(f"Error in summarization: {str(e)}")
        return f"Summary unavailable. Error: {str(e)}"

def fetch_rss_news(tech_sources, business_sources, science_sources, world_sources, sports_sources, health_sources):
    articles = []
    cutoff_time = datetime.now(pytz.UTC) - RSS_FETCH_INTERVAL
    
    category_sources = {
        "Technology": tech_sources if tech_sources else [],
        "Business": business_sources if business_sources else [],
        "Science": science_sources if science_sources else [],
        "World News": world_sources if world_sources else [],
        "Sports": sports_sources if sports_sources else [],
        "Health": health_sources if health_sources else []
    }
    
    logger.info(f"Selected sources: {category_sources}")
    
    for category, sources in category_sources.items():
        if not sources:
            continue
            
        logger.info(f"Processing category: {category} with sources: {sources}")
        
        for source in sources:
            if source in NEWS_SOURCES[category]:
                url = NEWS_SOURCES[category][source]
                try:
                    logger.info(f"Fetching from URL: {url}")
                    feed = feedparser.parse(url)
                    
                    if hasattr(feed, 'status') and feed.status != 200:
                        logger.warning(f"Failed to fetch feed from {url}. Status: {feed.status}")
                        continue
                        
                    for entry in feed.entries:
                        try:
                            published = datetime(*entry.published_parsed[:6], tzinfo=pytz.UTC)
                            if published > cutoff_time:
                                articles.append({
                                    "title": entry.title,
                                    "description": BeautifulSoup(entry.description, "html.parser").get_text(),
                                    "link": entry.link,
                                    "category": category,
                                    "source": source,
                                    "published": published
                                })
                        except (AttributeError, TypeError) as e:
                            logger.error(f"Error processing entry: {str(e)}")
                            continue
                            
                except Exception as e:
                    logger.error(f"Error fetching feed from {url}: {str(e)}")
                    continue
    
    logger.info(f"Total articles fetched: {len(articles)}")
    articles = sorted(articles, key=lambda x: x["published"], reverse=True)[:ARTICLE_LIMIT]
    return articles

def summarize_articles(articles, model_name):
    summaries = []
    for article in articles:
        content = article["description"]
        summary = summarize_text(content, model_name)
        summaries.append(f"""
        <div style='margin-bottom: 20px; white-space: pre-wrap;'>
        πŸ“° {article['title']}
        πŸ“ƒ Summary: {summary}
        - πŸ“ Category: {article['category']}
        - πŸ’‘ Source: {article['source']}
        - πŸ”— Read More: <a href="{article['link']}" target="_blank" style="text-decoration: none;">click here</a>
        </div>
        """)
    return "\n".join(summaries)

def get_summary(tech_sources, business_sources, science_sources, world_sources, 
                sports_sources, health_sources, selected_model):
    try:
        if not any([tech_sources, business_sources, science_sources, 
                   world_sources, sports_sources, health_sources]):
            return "Please select at least one news source."
        
        articles = fetch_rss_news(tech_sources, business_sources, science_sources,
                                world_sources, sports_sources, health_sources)
        
        if not articles:
            return "No recent news found from the selected sources."
            
        return summarize_articles(articles, selected_model)
    except Exception as e:
        logger.error(f"Error in get_summary: {str(e)}")
        return f"An error occurred while processing your request: {str(e)}"

# Gradio Interface
demo = gr.Blocks()

with demo:
    gr.Markdown("# πŸ“° AI News Summarizer")
    
    with gr.Row():
        with gr.Column():
            tech_sources = gr.CheckboxGroup(
                choices=list(NEWS_SOURCES["Technology"].keys()),
                label="Technology Sources",
                value=[]
            )
            
            business_sources = gr.CheckboxGroup(
                choices=list(NEWS_SOURCES["Business"].keys()),
                label="Business Sources",
                value=[]
            )
            
            science_sources = gr.CheckboxGroup(
                choices=list(NEWS_SOURCES["Science"].keys()),
                label="Science Sources",
                value=[]
            )
            
        with gr.Column():
            world_sources = gr.CheckboxGroup(
                choices=list(NEWS_SOURCES["World News"].keys()),
                label="World News Sources",
                value=[]
            )
            
            sports_sources = gr.CheckboxGroup(
                choices=list(NEWS_SOURCES["Sports"].keys()),
                label="Sports Sources",
                value=[]
            )
            
            health_sources = gr.CheckboxGroup(
                choices=list(NEWS_SOURCES["Health"].keys()),
                label="Health Sources",
                value=[]
            )
            
        with gr.Column():
            model_selector = gr.Radio(
                choices=list(SUMMARIZER_MODELS.keys()),
                label="Choose Summarization Model",
                value="OpenRouter (Claude-3)"  # Changed default to OpenRouter
            )
    
       summarize_button = gr.Button("Get News Summary")
    summary_output = gr.HTML(label="News Summary")  # Changed from gr.Textbox to gr.HTML

    summarize_button.click(
        get_summary,
        inputs=[
            tech_sources,
            business_sources,
            science_sources,
            world_sources,
            sports_sources,
            health_sources,
            model_selector
        ],
        outputs=summary_output
    )

if __name__ == "__main__":
    demo.launch()