Create testapp.py
#1
by
RichardForests
- opened
- testapp.py +78 -0
testapp.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import gradio as gr
|
3 |
+
from queue import Queue
|
4 |
+
import time
|
5 |
+
from prometheus_client import start_http_server, Counter, Histogram
|
6 |
+
import threading
|
7 |
+
import psutil
|
8 |
+
import random
|
9 |
+
from transformers import pipeline, AutoConfig
|
10 |
+
|
11 |
+
# Load the model and its configuration
|
12 |
+
model_name = "Sevixdd/roberta-base-finetuned-ner" # Make sure this model is available
|
13 |
+
ner_pipeline = pipeline("ner", model=model_name)
|
14 |
+
config = AutoConfig.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# --- Prometheus Metrics ---
|
17 |
+
REQUEST_COUNT = Counter('gradio_request_count', 'Total requests')
|
18 |
+
REQUEST_LATENCY = Histogram('gradio_request_latency_seconds', 'Request latency (s)')
|
19 |
+
|
20 |
+
# --- Logging ---
|
21 |
+
logging.basicConfig(filename="chat_log.txt", level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
22 |
+
|
23 |
+
# --- Chat Queue ---
|
24 |
+
chat_queue = Queue(maxsize=1) # Allow only one request at a time
|
25 |
+
|
26 |
+
# --- Chat Function ---
|
27 |
+
def chat_function(message, history):
|
28 |
+
with REQUEST_LATENCY.time():
|
29 |
+
REQUEST_COUNT.inc()
|
30 |
+
try:
|
31 |
+
if chat_queue.full():
|
32 |
+
return "The model is busy. Please wait..." # More user-friendly message
|
33 |
+
|
34 |
+
chat_queue.put(message)
|
35 |
+
logging.info(f"User: {message}")
|
36 |
+
|
37 |
+
ner_result = ner_pipeline(message)
|
38 |
+
response = f"Response from NER model: {ner_result}"
|
39 |
+
logging.info(f"Bot: {response}")
|
40 |
+
|
41 |
+
time.sleep(random.uniform(0.5, 2.5)) # Simulate processing (adjust as needed)
|
42 |
+
|
43 |
+
chat_queue.get()
|
44 |
+
return response
|
45 |
+
except Exception as e:
|
46 |
+
logging.error(f"Error: {e}")
|
47 |
+
return "An error occurred. Please try again later." # More helpful error message
|
48 |
+
|
49 |
+
# --- Gradio Interface ---
|
50 |
+
with gr.Blocks(
|
51 |
+
css="""
|
52 |
+
body {
|
53 |
+
background-image: url("stag.jpeg");
|
54 |
+
background-size: cover;
|
55 |
+
background-repeat: no-repeat;
|
56 |
+
}
|
57 |
+
""",
|
58 |
+
title="PLOD Filtered with Monitoring"
|
59 |
+
) as demo:
|
60 |
+
with gr.Tab("Chat"):
|
61 |
+
gr.Markdown("## Chat with the Bot")
|
62 |
+
chatbot = gr.ChatInterface(fn=chat_function)
|
63 |
+
|
64 |
+
with gr.Tab("Model Details"):
|
65 |
+
gr.Markdown("## Model Configuration")
|
66 |
+
gr.JSON(value=config.to_dict(), interactive=False)
|
67 |
+
|
68 |
+
# ... other tabs (Performance Metrics, Infrastructure, Logs) ...
|
69 |
+
|
70 |
+
# --- Update Functions ---
|
71 |
+
# ... (Implement update functions for metrics, usage, and logs here)
|
72 |
+
|
73 |
+
# --- Background Threads ---
|
74 |
+
threading.Thread(target=start_http_server, args=(8000,), daemon=True).start()
|
75 |
+
# ... (Threads for metrics, usage, and logs update)
|
76 |
+
|
77 |
+
# Launch the app
|
78 |
+
demo.launch(share=True)
|