|
import torch |
|
import torch.nn as nn |
|
from torch.nn import ( |
|
Linear, |
|
Conv2d, |
|
BatchNorm1d, |
|
BatchNorm2d, |
|
PReLU, |
|
ReLU, |
|
Sigmoid, |
|
Dropout, |
|
MaxPool2d, |
|
AdaptiveAvgPool2d, |
|
Sequential, |
|
Module, |
|
) |
|
from collections import namedtuple |
|
|
|
|
|
|
|
|
|
|
|
class Flatten(Module): |
|
def forward(self, input): |
|
return input.view(input.size(0), -1) |
|
|
|
|
|
def l2_norm(input, axis=1): |
|
norm = torch.norm(input, 2, axis, True) |
|
output = torch.div(input, norm) |
|
|
|
return output |
|
|
|
|
|
class SEModule(Module): |
|
def __init__(self, channels, reduction): |
|
super(SEModule, self).__init__() |
|
self.avg_pool = AdaptiveAvgPool2d(1) |
|
self.fc1 = Conv2d( |
|
channels, channels // reduction, kernel_size=1, padding=0, bias=False |
|
) |
|
|
|
nn.init.xavier_uniform_(self.fc1.weight.data) |
|
|
|
self.relu = ReLU(inplace=True) |
|
self.fc2 = Conv2d( |
|
channels // reduction, channels, kernel_size=1, padding=0, bias=False |
|
) |
|
|
|
self.sigmoid = Sigmoid() |
|
|
|
def forward(self, x): |
|
module_input = x |
|
x = self.avg_pool(x) |
|
x = self.fc1(x) |
|
x = self.relu(x) |
|
x = self.fc2(x) |
|
x = self.sigmoid(x) |
|
|
|
return module_input * x |
|
|
|
|
|
class bottleneck_IR(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
BatchNorm2d(depth), |
|
) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
BatchNorm2d(depth), |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
|
|
return res + shortcut |
|
|
|
|
|
class bottleneck_IR_SE(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR_SE, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
BatchNorm2d(depth), |
|
) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
BatchNorm2d(depth), |
|
SEModule(depth, 16), |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
|
|
return res + shortcut |
|
|
|
|
|
class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])): |
|
"""A named tuple describing a ResNet block.""" |
|
|
|
|
|
def get_block(in_channel, depth, num_units, stride=2): |
|
return [Bottleneck(in_channel, depth, stride)] + [ |
|
Bottleneck(depth, depth, 1) for i in range(num_units - 1) |
|
] |
|
|
|
|
|
def get_blocks(num_layers): |
|
if num_layers == 50: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=4), |
|
get_block(in_channel=128, depth=256, num_units=14), |
|
get_block(in_channel=256, depth=512, num_units=3), |
|
] |
|
elif num_layers == 100: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=13), |
|
get_block(in_channel=128, depth=256, num_units=30), |
|
get_block(in_channel=256, depth=512, num_units=3), |
|
] |
|
elif num_layers == 152: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=8), |
|
get_block(in_channel=128, depth=256, num_units=36), |
|
get_block(in_channel=256, depth=512, num_units=3), |
|
] |
|
|
|
return blocks |
|
|
|
|
|
class Backbone(Module): |
|
def __init__(self, input_size, num_layers, mode="ir"): |
|
super(Backbone, self).__init__() |
|
assert input_size[0] in [ |
|
112, |
|
224, |
|
], "input_size should be [112, 112] or [224, 224]" |
|
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" |
|
assert mode in ["ir", "ir_se"], "mode should be ir or ir_se" |
|
blocks = get_blocks(num_layers) |
|
if mode == "ir": |
|
unit_module = bottleneck_IR |
|
elif mode == "ir_se": |
|
unit_module = bottleneck_IR_SE |
|
self.input_layer = Sequential( |
|
Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64) |
|
) |
|
if input_size[0] == 112: |
|
self.output_layer = Sequential( |
|
BatchNorm2d(512), |
|
Dropout(), |
|
Flatten(), |
|
Linear(512 * 7 * 7, 512), |
|
BatchNorm1d(512), |
|
) |
|
else: |
|
self.output_layer = Sequential( |
|
BatchNorm2d(512), |
|
Dropout(), |
|
Flatten(), |
|
Linear(512 * 14 * 14, 512), |
|
BatchNorm1d(512), |
|
) |
|
|
|
modules = [] |
|
for block in blocks: |
|
for bottleneck in block: |
|
modules.append( |
|
unit_module( |
|
bottleneck.in_channel, bottleneck.depth, bottleneck.stride |
|
) |
|
) |
|
self.body = Sequential(*modules) |
|
|
|
self._initialize_weights() |
|
|
|
def forward(self, x): |
|
x = self.input_layer(x) |
|
x = self.body(x) |
|
x = self.output_layer(x) |
|
|
|
return x |
|
|
|
def _initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.xavier_uniform_(m.weight.data) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm1d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight.data) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
|
|
def IR_50(input_size): |
|
"""Constructs a ir-50 model.""" |
|
model = Backbone(input_size, 50, "ir") |
|
|
|
return model |
|
|
|
|
|
def IR_101(input_size): |
|
"""Constructs a ir-101 model.""" |
|
model = Backbone(input_size, 100, "ir") |
|
|
|
return model |
|
|
|
|
|
def IR_152(input_size): |
|
"""Constructs a ir-152 model.""" |
|
model = Backbone(input_size, 152, "ir") |
|
|
|
return model |
|
|
|
|
|
def IR_SE_50(input_size): |
|
"""Constructs a ir_se-50 model.""" |
|
model = Backbone(input_size, 50, "ir_se") |
|
|
|
return model |
|
|
|
|
|
def IR_SE_101(input_size): |
|
"""Constructs a ir_se-101 model.""" |
|
model = Backbone(input_size, 100, "ir_se") |
|
|
|
return model |
|
|
|
|
|
def IR_SE_152(input_size): |
|
"""Constructs a ir_se-152 model.""" |
|
model = Backbone(input_size, 152, "ir_se") |
|
|
|
return model |
|
|