Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer | |
from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM | |
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import ( | |
process_images, | |
tokenizer_image_token, | |
get_model_name_from_path, | |
) | |
from llava.constants import ( | |
IMAGE_TOKEN_INDEX, | |
DEFAULT_IMAGE_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IM_END_TOKEN, | |
IMAGE_PLACEHOLDER, | |
) | |
from llava.conversation import conv_templates, SeparatorStyle | |
import argparse | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import re | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default="liuhaotian/llava-v1.6-mistral-7b") | |
parser.add_argument("--image-file", type=str, required=True) | |
parser.add_argument("--inference-type", type=str, default="auto") | |
parser.add_argument("--prompt", type=str, default="Explain this image") | |
cmd_args = parser.parse_args() | |
# Line 138 uncomment the cuda() to use GPUs | |
# device = "cpu" | |
device = cmd_args.inference_type | |
prompt = cmd_args.prompt | |
image_file = cmd_args.image_file | |
model_path = cmd_args.model_path | |
# Functions for inference | |
def image_parser(args): | |
out = args.image_file.split(args.sep) | |
return out | |
def load_image(image_file): | |
if image_file.startswith("http") or image_file.startswith("https"): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
image = Image.open(image_file).convert("RGB") | |
return image | |
def load_images(image_files): | |
out = [] | |
for image_file in image_files: | |
image = load_image(image_file) | |
out.append(image) | |
return out | |
model_name = get_model_name_from_path('llava-v1.6-mistral-7b') | |
args = type('Args', (), { | |
"model_path": model_path, | |
"model_base": None, | |
"model_name": model_name, | |
"query": prompt, | |
"conv_mode": None, | |
"image_file": image_file, | |
"sep": ",", | |
"temperature": 0, | |
"top_p": None, | |
"num_beams": 1, | |
"max_new_tokens": 512 | |
})() | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
model_path, None, model_name, device_map=device | |
) | |
qs = args.query | |
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN | |
if IMAGE_PLACEHOLDER in qs: | |
if model.config.mm_use_im_start_end: | |
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) | |
else: | |
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) | |
else: | |
if model.config.mm_use_im_start_end: | |
qs = image_token_se + "\n" + qs | |
else: | |
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
if "llama-2" in model_name.lower(): | |
conv_mode = "llava_llama_2" | |
elif "mistral" in model_name.lower(): | |
conv_mode = "mistral_instruct" | |
elif "v1.6-34b" in model_name.lower(): | |
conv_mode = "chatml_direct" | |
elif "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt" | |
else: | |
conv_mode = "llava_v0" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print( | |
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
conv_mode, args.conv_mode, args.conv_mode | |
) | |
) | |
else: | |
args.conv_mode = conv_mode | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
if ".jpg" in image_file or ".png" in image_file: | |
image_files = image_parser(args) | |
else: | |
import glob | |
import os | |
image_ext = ("*.png", '*.jpg') | |
image_files = [] | |
for ext in image_ext: | |
image_files.extend(glob.glob(os.path.join(image_file, ext))) | |
images = load_images(image_files) | |
image_sizes = [x.size for x in images] | |
images_tensor = process_images( | |
images, | |
image_processor, | |
model.config | |
).to(model.device, dtype=torch.float16) | |
input_ids = ( | |
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
.unsqueeze(0) | |
# .cuda() | |
) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=images_tensor, | |
image_sizes=image_sizes, | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
top_p=args.top_p, | |
num_beams=args.num_beams, | |
max_new_tokens=args.max_new_tokens, | |
use_cache=True, | |
) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
if "dataset1" in image_file: | |
print("Num of words: ", len(outputs)) | |
elif "dataset2" in image_file: | |
print() | |
else: | |
print("Is single word?", len((outputs).split()) == 1) | |
print(outputs) | |
# End Llava inference |