|
import gradio as gr |
|
import torch |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
import logging |
|
from typing import List, Dict |
|
import gc |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class HealthAssistant: |
|
def __init__(self): |
|
self.model_name = "Qwen/Qwen2-VL-7B-Instruct" |
|
self.model = None |
|
self.tokenizer = None |
|
self.processor = None |
|
self.metrics = [] |
|
self.medications = [] |
|
self.initialize_model() |
|
|
|
def initialize_model(self): |
|
try: |
|
logger.info("Loading Qwen2-VL model...") |
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
self.model_name, |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
device_map="auto" |
|
) |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) |
|
self.processor = AutoProcessor.from_pretrained( |
|
self.model_name, |
|
min_pixels=256*28*28, |
|
max_pixels=1280*28*28 |
|
) |
|
logger.info("Model loaded successfully") |
|
except Exception as e: |
|
logger.error(f"Error loading model: {e}") |
|
raise |
|
|
|
def generate_response(self, message: str, history: List = None) -> str: |
|
try: |
|
|
|
messages = self._format_messages(message, history) |
|
|
|
|
|
text = self.processor.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
|
|
image_inputs, video_inputs = [], [] |
|
|
|
|
|
inputs = self.processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt" |
|
) |
|
inputs = inputs.to(self.model.device) |
|
|
|
|
|
generated_ids = self.model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9 |
|
) |
|
|
|
|
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = self.processor.batch_decode( |
|
generated_ids_trimmed, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
|
|
del inputs, generated_ids, generated_ids_trimmed |
|
gc.collect() |
|
torch.cuda.empty_cache() if torch.cuda.is_available() else None |
|
|
|
return output_text.strip() |
|
|
|
except Exception as e: |
|
logger.error(f"Error generating response: {e}") |
|
return "I apologize, but I encountered an error. Please try again." |
|
|
|
def _format_messages(self, message: str, history: List = None) -> List[Dict]: |
|
"""Format messages for the Qwen2-VL model""" |
|
|
|
messages = [] |
|
|
|
|
|
health_context = self._get_health_context() |
|
if health_context: |
|
messages.append({ |
|
"role": "system", |
|
"content": [{"type": "text", "text": f"Current health information:\n{health_context}"}] |
|
}) |
|
|
|
|
|
if history: |
|
for user_msg, assistant_msg in history[-3:]: |
|
messages.extend([ |
|
{"role": "user", "content": [{"type": "text", "text": user_msg}]}, |
|
{"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]} |
|
]) |
|
|
|
|
|
messages.append({ |
|
"role": "user", |
|
"content": [{"type": "text", "text": message}] |
|
}) |
|
|
|
return messages |
|
|
|
def _get_health_context(self) -> str: |
|
"""Get health metrics and medications context""" |
|
context_parts = [] |
|
|
|
if self.metrics: |
|
latest = self.metrics[-1] |
|
context_parts.extend([ |
|
"Recent Health Metrics:", |
|
f"- Weight: {latest.get('Weight', 'N/A')} kg", |
|
f"- Steps: {latest.get('Steps', 'N/A')}", |
|
f"- Sleep: {latest.get('Sleep', 'N/A')} hours" |
|
]) |
|
|
|
if self.medications: |
|
context_parts.append("\nCurrent Medications:") |
|
for med in self.medications: |
|
med_info = f"- {med['Medication']} ({med['Dosage']}) at {med['Time']}" |
|
if med.get('Notes'): |
|
med_info += f" | Note: {med['Notes']}" |
|
context_parts.append(med_info) |
|
|
|
return "\n".join(context_parts) if context_parts else "" |
|
|
|
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool: |
|
try: |
|
self.metrics.append({ |
|
'Weight': weight, |
|
'Steps': steps, |
|
'Sleep': sleep |
|
}) |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error adding metrics: {e}") |
|
return False |
|
|
|
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool: |
|
try: |
|
self.medications.append({ |
|
'Medication': name, |
|
'Dosage': dosage, |
|
'Time': time, |
|
'Notes': notes |
|
}) |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error adding medication: {e}") |
|
return False |
|
|
|
class GradioInterface: |
|
def __init__(self): |
|
self.assistant = HealthAssistant() |
|
|
|
def chat_response(self, message: str, history: List) -> tuple: |
|
if not message.strip(): |
|
return "", history |
|
|
|
response = self.assistant.generate_response(message, history) |
|
history.append([message, response]) |
|
return "", history |
|
|
|
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str: |
|
if not all([weight, steps, sleep]): |
|
return "β οΈ Please fill in all metrics." |
|
|
|
if self.assistant.add_metrics(weight, steps, sleep): |
|
return "β
Health metrics saved successfully!" |
|
return "β Error saving metrics." |
|
|
|
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str: |
|
if not all([name, dosage, time]): |
|
return "β οΈ Please fill in all required fields." |
|
|
|
if self.assistant.add_medication(name, dosage, time, notes): |
|
return "β
Medication added successfully!" |
|
return "β Error adding medication." |
|
|
|
def create_interface(self): |
|
with gr.Blocks(title="Health Assistant", theme=gr.themes.Soft()) as demo: |
|
gr.Markdown( |
|
""" |
|
# π₯ AI Health Assistant |
|
Powered by Qwen2-VL for intelligent health guidance and monitoring. |
|
""" |
|
) |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.Tab("π¬ Health Chat"): |
|
chatbot = gr.Chatbot( |
|
height=450, |
|
show_label=False |
|
) |
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
placeholder="Ask your health question... (Press Enter)", |
|
lines=2, |
|
show_label=False, |
|
scale=9 |
|
) |
|
send_btn = gr.Button("Send", scale=1) |
|
clear_btn = gr.Button("Clear Chat") |
|
|
|
|
|
with gr.Tab("π Health Metrics"): |
|
with gr.Row(): |
|
weight_input = gr.Number(label="Weight (kg)") |
|
steps_input = gr.Number(label="Steps") |
|
sleep_input = gr.Number(label="Hours Slept") |
|
metrics_btn = gr.Button("Save Metrics") |
|
metrics_status = gr.Markdown() |
|
|
|
|
|
with gr.Tab("π Medication Manager"): |
|
with gr.Row(): |
|
med_name = gr.Textbox(label="Medication Name") |
|
med_dosage = gr.Textbox(label="Dosage") |
|
med_time = gr.Textbox(label="Time (e.g., 9:00 AM)") |
|
med_notes = gr.Textbox(label="Notes (optional)") |
|
med_btn = gr.Button("Add Medication") |
|
med_status = gr.Markdown() |
|
|
|
|
|
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot]) |
|
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot]) |
|
clear_btn.click(lambda: [], None, chatbot) |
|
|
|
metrics_btn.click( |
|
self.add_health_metrics, |
|
inputs=[weight_input, steps_input, sleep_input], |
|
outputs=[metrics_status] |
|
) |
|
|
|
med_btn.click( |
|
self.add_medication_info, |
|
inputs=[med_name, med_dosage, med_time, med_notes], |
|
outputs=[med_status] |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
### β οΈ Important Note |
|
This AI assistant provides general health information only. |
|
Always consult healthcare professionals for medical advice. |
|
""" |
|
) |
|
|
|
return demo |
|
|
|
def main(): |
|
try: |
|
interface = GradioInterface() |
|
demo = interface.create_interface() |
|
demo.launch( |
|
share=False, |
|
enable_queue=True, |
|
max_threads=4 |
|
) |
|
except Exception as e: |
|
logger.error(f"Error starting application: {e}") |
|
|
|
if __name__ == "__main__": |
|
main() |