File size: 10,326 Bytes
4ef990b e1fb3b2 a548a89 e0bdeef a548a89 e0bdeef a548a89 fe937b3 a548a89 e1fb3b2 54c24d5 e1fb3b2 e0bdeef a548a89 e0bdeef a548a89 e0bdeef 54c24d5 a548a89 e1fb3b2 a548a89 e1fb3b2 a548a89 54c24d5 a548a89 e0bdeef a548a89 e0bdeef a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 e1fb3b2 fe937b3 e1fb3b2 e0bdeef a548a89 e0bdeef fe937b3 e1fb3b2 fe937b3 e1fb3b2 a548a89 e1fb3b2 fe937b3 a548a89 e1fb3b2 a548a89 54c24d5 a548a89 e0bdeef a548a89 54c24d5 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 e0bdeef a548a89 e0bdeef fe937b3 6ed2a87 a548a89 6ed2a87 fe937b3 a548a89 fe937b3 e1fb3b2 fe937b3 6ed2a87 a548a89 fe937b3 a548a89 6ed2a87 a548a89 fe937b3 a548a89 e1fb3b2 a548a89 6ed2a87 e1fb3b2 a548a89 e1fb3b2 a548a89 e1fb3b2 a548a89 e1fb3b2 a548a89 e1fb3b2 4ef990b e0bdeef a548a89 e0bdeef fe937b3 e0bdeef a548a89 e0bdeef a548a89 4ef990b fe937b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import logging
from typing import List, Dict
import gc
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HealthAssistant:
def __init__(self):
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
self.model = None
self.tokenizer = None
self.processor = None
self.metrics = []
self.medications = []
self.initialize_model()
def initialize_model(self):
try:
logger.info("Loading Qwen2-VL model...")
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.processor = AutoProcessor.from_pretrained(
self.model_name,
min_pixels=256*28*28,
max_pixels=1280*28*28
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {e}")
raise
def generate_response(self, message: str, history: List = None) -> str:
try:
# Format conversation with health context
messages = self._format_messages(message, history)
# Prepare for inference
text = self.processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Since we're not using images in this case
image_inputs, video_inputs = [], []
# Process inputs
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to(self.model.device)
# Generate response
generated_ids = self.model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.9
)
# Decode response
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
# Cleanup
del inputs, generated_ids, generated_ids_trimmed
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return output_text.strip()
except Exception as e:
logger.error(f"Error generating response: {e}")
return "I apologize, but I encountered an error. Please try again."
def _format_messages(self, message: str, history: List = None) -> List[Dict]:
"""Format messages for the Qwen2-VL model"""
# Add system context
messages = []
# Add health context
health_context = self._get_health_context()
if health_context:
messages.append({
"role": "system",
"content": [{"type": "text", "text": f"Current health information:\n{health_context}"}]
})
# Add conversation history
if history:
for user_msg, assistant_msg in history[-3:]: # Last 3 exchanges
messages.extend([
{"role": "user", "content": [{"type": "text", "text": user_msg}]},
{"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]}
])
# Add current message
messages.append({
"role": "user",
"content": [{"type": "text", "text": message}]
})
return messages
def _get_health_context(self) -> str:
"""Get health metrics and medications context"""
context_parts = []
if self.metrics:
latest = self.metrics[-1]
context_parts.extend([
"Recent Health Metrics:",
f"- Weight: {latest.get('Weight', 'N/A')} kg",
f"- Steps: {latest.get('Steps', 'N/A')}",
f"- Sleep: {latest.get('Sleep', 'N/A')} hours"
])
if self.medications:
context_parts.append("\nCurrent Medications:")
for med in self.medications:
med_info = f"- {med['Medication']} ({med['Dosage']}) at {med['Time']}"
if med.get('Notes'):
med_info += f" | Note: {med['Notes']}"
context_parts.append(med_info)
return "\n".join(context_parts) if context_parts else ""
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
try:
self.metrics.append({
'Weight': weight,
'Steps': steps,
'Sleep': sleep
})
return True
except Exception as e:
logger.error(f"Error adding metrics: {e}")
return False
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool:
try:
self.medications.append({
'Medication': name,
'Dosage': dosage,
'Time': time,
'Notes': notes
})
return True
except Exception as e:
logger.error(f"Error adding medication: {e}")
return False
class GradioInterface:
def __init__(self):
self.assistant = HealthAssistant()
def chat_response(self, message: str, history: List) -> tuple:
if not message.strip():
return "", history
response = self.assistant.generate_response(message, history)
history.append([message, response])
return "", history
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
if not all([weight, steps, sleep]):
return "β οΈ Please fill in all metrics."
if self.assistant.add_metrics(weight, steps, sleep):
return "β
Health metrics saved successfully!"
return "β Error saving metrics."
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str:
if not all([name, dosage, time]):
return "β οΈ Please fill in all required fields."
if self.assistant.add_medication(name, dosage, time, notes):
return "β
Medication added successfully!"
return "β Error adding medication."
def create_interface(self):
with gr.Blocks(title="Health Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π₯ AI Health Assistant
Powered by Qwen2-VL for intelligent health guidance and monitoring.
"""
)
with gr.Tabs():
# Chat Interface
with gr.Tab("π¬ Health Chat"):
chatbot = gr.Chatbot(
height=450,
show_label=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask your health question... (Press Enter)",
lines=2,
show_label=False,
scale=9
)
send_btn = gr.Button("Send", scale=1)
clear_btn = gr.Button("Clear Chat")
# Health Metrics
with gr.Tab("π Health Metrics"):
with gr.Row():
weight_input = gr.Number(label="Weight (kg)")
steps_input = gr.Number(label="Steps")
sleep_input = gr.Number(label="Hours Slept")
metrics_btn = gr.Button("Save Metrics")
metrics_status = gr.Markdown()
# Medication Manager
with gr.Tab("π Medication Manager"):
with gr.Row():
med_name = gr.Textbox(label="Medication Name")
med_dosage = gr.Textbox(label="Dosage")
med_time = gr.Textbox(label="Time (e.g., 9:00 AM)")
med_notes = gr.Textbox(label="Notes (optional)")
med_btn = gr.Button("Add Medication")
med_status = gr.Markdown()
# Event handlers
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
clear_btn.click(lambda: [], None, chatbot)
metrics_btn.click(
self.add_health_metrics,
inputs=[weight_input, steps_input, sleep_input],
outputs=[metrics_status]
)
med_btn.click(
self.add_medication_info,
inputs=[med_name, med_dosage, med_time, med_notes],
outputs=[med_status]
)
gr.Markdown(
"""
### β οΈ Important Note
This AI assistant provides general health information only.
Always consult healthcare professionals for medical advice.
"""
)
return demo
def main():
try:
interface = GradioInterface()
demo = interface.create_interface()
demo.launch(
share=False,
enable_queue=True,
max_threads=4
)
except Exception as e:
logger.error(f"Error starting application: {e}")
if __name__ == "__main__":
main() |