Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import gc
|
|
7 |
from typing import List, Dict, Optional
|
8 |
import os
|
9 |
|
10 |
-
# ================== Model Configuration ==================
|
11 |
class ModelHandler:
|
12 |
def __init__(self):
|
13 |
self.model_name = "google/flan-t5-large"
|
@@ -32,12 +31,10 @@ class ModelHandler:
|
|
32 |
|
33 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
34 |
try:
|
35 |
-
# Clear memory
|
36 |
gc.collect()
|
37 |
if torch.cuda.is_available():
|
38 |
torch.cuda.empty_cache()
|
39 |
|
40 |
-
# Prepare input
|
41 |
inputs = self.tokenizer(
|
42 |
prompt,
|
43 |
return_tensors="pt",
|
@@ -45,7 +42,6 @@ class ModelHandler:
|
|
45 |
max_length=512
|
46 |
).to(self.device)
|
47 |
|
48 |
-
# Generate response
|
49 |
with torch.no_grad():
|
50 |
outputs = self.model.generate(
|
51 |
inputs.input_ids,
|
@@ -58,7 +54,6 @@ class ModelHandler:
|
|
58 |
|
59 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
60 |
|
61 |
-
# Clear memory
|
62 |
del outputs, inputs
|
63 |
gc.collect()
|
64 |
if torch.cuda.is_available():
|
@@ -73,7 +68,6 @@ class ModelHandler:
|
|
73 |
if torch.cuda.is_available():
|
74 |
torch.cuda.empty_cache()
|
75 |
|
76 |
-
# ================== Data Management ==================
|
77 |
class HealthData:
|
78 |
def __init__(self):
|
79 |
self.metrics = []
|
@@ -116,65 +110,43 @@ class HealthData:
|
|
116 |
|
117 |
return "\n".join(context_parts) if context_parts else "No health data available."
|
118 |
|
119 |
-
# ================== Health Assistant ==================
|
120 |
class HealthAssistant:
|
121 |
def __init__(self):
|
122 |
self.model = ModelHandler()
|
123 |
self.data = HealthData()
|
124 |
self.request_count = 0
|
125 |
|
126 |
-
def _create_prompt(self, message: str,
|
127 |
-
prompt_parts = [
|
128 |
-
"You are a helpful healthcare assistant. Provide accurate and helpful information.",
|
129 |
-
f"User Health Information:\n{context}" if context else "",
|
130 |
-
"Previous conversation:",
|
131 |
-
]
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
if history:
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
return "\n\n".join(filter(None, prompt_parts))
|
140 |
|
141 |
def get_response(self, message: str, history: List = None) -> str:
|
142 |
-
# Increment request counter
|
143 |
self.request_count += 1
|
144 |
-
|
145 |
-
# Get health context
|
146 |
-
context = self.data.get_health_context()
|
147 |
-
|
148 |
-
# Create prompt
|
149 |
-
prompt = self._create_prompt(message, context, history)
|
150 |
-
|
151 |
-
# Get response
|
152 |
response = self.model.generate_response(prompt)
|
153 |
|
154 |
-
# Periodic memory cleanup
|
155 |
if self.request_count % 5 == 0:
|
156 |
self.model.clear_memory()
|
157 |
|
158 |
return response
|
159 |
|
160 |
-
def analyze_symptoms(self, symptoms: str) -> str:
|
161 |
-
if not symptoms:
|
162 |
-
return "Please describe your symptoms."
|
163 |
-
|
164 |
-
prompt = (
|
165 |
-
"Analyze these symptoms as a medical professional:\n"
|
166 |
-
f"{symptoms}\n\n"
|
167 |
-
"Provide analysis with:\n"
|
168 |
-
"1. Risk Level\n"
|
169 |
-
"2. Key Symptoms\n"
|
170 |
-
"3. Possible Causes\n"
|
171 |
-
"4. Recommended Actions\n"
|
172 |
-
"5. When to Seek Medical Care"
|
173 |
-
)
|
174 |
-
|
175 |
-
return self.model.generate_response(prompt)
|
176 |
-
|
177 |
-
# ================== Gradio Interface ==================
|
178 |
class HealthAssistantUI:
|
179 |
def __init__(self):
|
180 |
self.assistant = HealthAssistant()
|
@@ -184,8 +156,7 @@ class HealthAssistantUI:
|
|
184 |
return "", history
|
185 |
|
186 |
bot_message = self.assistant.get_response(message, history)
|
187 |
-
history.append(
|
188 |
-
history.append({"role": "assistant", "content": bot_message})
|
189 |
return "", history
|
190 |
|
191 |
def save_metrics(self, weight: float, steps: int, sleep: float) -> tuple:
|
@@ -220,58 +191,36 @@ class HealthAssistantUI:
|
|
220 |
with gr.Tabs():
|
221 |
# Chat Interface
|
222 |
with gr.Tab("💬 Health Chat"):
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
height=450,
|
228 |
-
container=True,
|
229 |
-
)
|
230 |
-
with gr.Column(scale=1):
|
231 |
-
gr.Markdown("### Your Health Info")
|
232 |
-
context_display = gr.Markdown(
|
233 |
-
value=self.assistant.data.get_health_context()
|
234 |
-
)
|
235 |
-
|
236 |
with gr.Row():
|
237 |
msg = gr.Textbox(
|
238 |
placeholder="Type your health question... (Press Enter)",
|
239 |
lines=2,
|
240 |
-
max_lines=2,
|
241 |
show_label=False,
|
242 |
-
container=False,
|
243 |
scale=9
|
244 |
)
|
245 |
send_btn = gr.Button("Send", scale=1)
|
246 |
-
|
247 |
clear_btn = gr.Button("Clear Chat")
|
248 |
-
|
249 |
-
#
|
250 |
-
with gr.Tab("🔍 Symptom Checker"):
|
251 |
-
symptoms_input = gr.Textbox(
|
252 |
-
label="Describe your symptoms",
|
253 |
-
placeholder="Enter your symptoms in detail...",
|
254 |
-
lines=4
|
255 |
-
)
|
256 |
-
analyze_btn = gr.Button("Analyze Symptoms", variant="primary")
|
257 |
-
symptoms_output = gr.Markdown()
|
258 |
-
|
259 |
-
# Health Metrics
|
260 |
with gr.Tab("📊 Health Metrics"):
|
261 |
with gr.Row():
|
262 |
with gr.Column():
|
263 |
weight_input = gr.Number(label="Weight (kg)")
|
264 |
steps_input = gr.Number(label="Steps")
|
265 |
sleep_input = gr.Number(label="Hours Slept")
|
266 |
-
metrics_btn = gr.Button("Save Metrics"
|
267 |
metrics_status = gr.Markdown()
|
268 |
|
269 |
with gr.Column():
|
270 |
metrics_display = gr.Dataframe(
|
271 |
headers=["Date", "Weight", "Steps", "Sleep"]
|
272 |
)
|
273 |
-
|
274 |
-
# Medication Manager
|
275 |
with gr.Tab("💊 Medication Manager"):
|
276 |
with gr.Row():
|
277 |
with gr.Column():
|
@@ -279,7 +228,7 @@ class HealthAssistantUI:
|
|
279 |
med_dosage = gr.Textbox(label="Dosage")
|
280 |
med_time = gr.Textbox(label="Time")
|
281 |
med_notes = gr.Textbox(label="Notes (optional)")
|
282 |
-
med_btn = gr.Button("Add Medication"
|
283 |
med_status = gr.Markdown()
|
284 |
|
285 |
with gr.Column():
|
@@ -290,13 +239,7 @@ class HealthAssistantUI:
|
|
290 |
# Event handlers
|
291 |
msg.submit(self.user_chat, [msg, chatbot], [msg, chatbot])
|
292 |
send_btn.click(self.user_chat, [msg, chatbot], [msg, chatbot])
|
293 |
-
clear_btn.click(lambda:
|
294 |
-
|
295 |
-
analyze_btn.click(
|
296 |
-
self.assistant.analyze_symptoms,
|
297 |
-
inputs=[symptoms_input],
|
298 |
-
outputs=[symptoms_output]
|
299 |
-
)
|
300 |
|
301 |
metrics_btn.click(
|
302 |
self.save_metrics,
|
@@ -310,12 +253,6 @@ class HealthAssistantUI:
|
|
310 |
outputs=[med_status, meds_display]
|
311 |
)
|
312 |
|
313 |
-
gr.Markdown(
|
314 |
-
"""### ⚠️ Medical Disclaimer
|
315 |
-
This AI assistant provides general health information only.
|
316 |
-
Always consult healthcare professionals for medical advice."""
|
317 |
-
)
|
318 |
-
|
319 |
return demo
|
320 |
|
321 |
def main():
|
|
|
7 |
from typing import List, Dict, Optional
|
8 |
import os
|
9 |
|
|
|
10 |
class ModelHandler:
|
11 |
def __init__(self):
|
12 |
self.model_name = "google/flan-t5-large"
|
|
|
31 |
|
32 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
33 |
try:
|
|
|
34 |
gc.collect()
|
35 |
if torch.cuda.is_available():
|
36 |
torch.cuda.empty_cache()
|
37 |
|
|
|
38 |
inputs = self.tokenizer(
|
39 |
prompt,
|
40 |
return_tensors="pt",
|
|
|
42 |
max_length=512
|
43 |
).to(self.device)
|
44 |
|
|
|
45 |
with torch.no_grad():
|
46 |
outputs = self.model.generate(
|
47 |
inputs.input_ids,
|
|
|
54 |
|
55 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
|
|
|
57 |
del outputs, inputs
|
58 |
gc.collect()
|
59 |
if torch.cuda.is_available():
|
|
|
68 |
if torch.cuda.is_available():
|
69 |
torch.cuda.empty_cache()
|
70 |
|
|
|
71 |
class HealthData:
|
72 |
def __init__(self):
|
73 |
self.metrics = []
|
|
|
110 |
|
111 |
return "\n".join(context_parts) if context_parts else "No health data available."
|
112 |
|
|
|
113 |
class HealthAssistant:
|
114 |
def __init__(self):
|
115 |
self.model = ModelHandler()
|
116 |
self.data = HealthData()
|
117 |
self.request_count = 0
|
118 |
|
119 |
+
def _create_prompt(self, message: str, history: List = None) -> str:
|
120 |
+
prompt_parts = ["You are a helpful healthcare assistant."]
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
# Add health context
|
123 |
+
health_context = self.data.get_health_context()
|
124 |
+
if health_context != "No health data available.":
|
125 |
+
prompt_parts.append(f"Current health information:\n{health_context}")
|
126 |
+
|
127 |
+
# Add conversation history
|
128 |
if history:
|
129 |
+
prompt_parts.append("Previous conversation:")
|
130 |
+
for user_msg, bot_msg in history[-3:]:
|
131 |
+
prompt_parts.append(f"User: {user_msg}")
|
132 |
+
prompt_parts.append(f"Assistant: {bot_msg}")
|
133 |
+
|
134 |
+
# Add current question
|
135 |
+
prompt_parts.append(f"User: {message}")
|
136 |
+
prompt_parts.append("Assistant:")
|
137 |
|
138 |
+
return "\n\n".join(prompt_parts)
|
|
|
139 |
|
140 |
def get_response(self, message: str, history: List = None) -> str:
|
|
|
141 |
self.request_count += 1
|
142 |
+
prompt = self._create_prompt(message, history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
response = self.model.generate_response(prompt)
|
144 |
|
|
|
145 |
if self.request_count % 5 == 0:
|
146 |
self.model.clear_memory()
|
147 |
|
148 |
return response
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
class HealthAssistantUI:
|
151 |
def __init__(self):
|
152 |
self.assistant = HealthAssistant()
|
|
|
156 |
return "", history
|
157 |
|
158 |
bot_message = self.assistant.get_response(message, history)
|
159 |
+
history.append([message, bot_message])
|
|
|
160 |
return "", history
|
161 |
|
162 |
def save_metrics(self, weight: float, steps: int, sleep: float) -> tuple:
|
|
|
191 |
with gr.Tabs():
|
192 |
# Chat Interface
|
193 |
with gr.Tab("💬 Health Chat"):
|
194 |
+
chatbot = gr.Chatbot(
|
195 |
+
height=450,
|
196 |
+
show_label=False,
|
197 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
with gr.Row():
|
199 |
msg = gr.Textbox(
|
200 |
placeholder="Type your health question... (Press Enter)",
|
201 |
lines=2,
|
|
|
202 |
show_label=False,
|
|
|
203 |
scale=9
|
204 |
)
|
205 |
send_btn = gr.Button("Send", scale=1)
|
|
|
206 |
clear_btn = gr.Button("Clear Chat")
|
207 |
+
|
208 |
+
# Health Metrics Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
with gr.Tab("📊 Health Metrics"):
|
210 |
with gr.Row():
|
211 |
with gr.Column():
|
212 |
weight_input = gr.Number(label="Weight (kg)")
|
213 |
steps_input = gr.Number(label="Steps")
|
214 |
sleep_input = gr.Number(label="Hours Slept")
|
215 |
+
metrics_btn = gr.Button("Save Metrics")
|
216 |
metrics_status = gr.Markdown()
|
217 |
|
218 |
with gr.Column():
|
219 |
metrics_display = gr.Dataframe(
|
220 |
headers=["Date", "Weight", "Steps", "Sleep"]
|
221 |
)
|
222 |
+
|
223 |
+
# Medication Manager Tab
|
224 |
with gr.Tab("💊 Medication Manager"):
|
225 |
with gr.Row():
|
226 |
with gr.Column():
|
|
|
228 |
med_dosage = gr.Textbox(label="Dosage")
|
229 |
med_time = gr.Textbox(label="Time")
|
230 |
med_notes = gr.Textbox(label="Notes (optional)")
|
231 |
+
med_btn = gr.Button("Add Medication")
|
232 |
med_status = gr.Markdown()
|
233 |
|
234 |
with gr.Column():
|
|
|
239 |
# Event handlers
|
240 |
msg.submit(self.user_chat, [msg, chatbot], [msg, chatbot])
|
241 |
send_btn.click(self.user_chat, [msg, chatbot], [msg, chatbot])
|
242 |
+
clear_btn.click(lambda: [], None, chatbot)
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
metrics_btn.click(
|
245 |
self.save_metrics,
|
|
|
253 |
outputs=[med_status, meds_display]
|
254 |
)
|
255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
return demo
|
257 |
|
258 |
def main():
|