Update app.py
Browse files
app.py
CHANGED
@@ -2,28 +2,29 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
from datetime import datetime
|
4 |
import torch
|
5 |
-
from transformers import
|
6 |
import gc
|
7 |
-
from typing import List, Dict
|
8 |
import os
|
9 |
|
10 |
class ModelHandler:
|
11 |
def __init__(self):
|
12 |
-
self.model_name = "google/flan-t5-
|
13 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
self.
|
15 |
-
self.model = None
|
16 |
self.initialize_model()
|
17 |
-
|
18 |
def initialize_model(self):
|
19 |
try:
|
20 |
-
|
21 |
-
self.
|
|
|
22 |
self.model_name,
|
23 |
torch_dtype=torch.float32,
|
24 |
low_cpu_mem_usage=True
|
25 |
)
|
26 |
self.model.to(self.device)
|
|
|
27 |
return True
|
28 |
except Exception as e:
|
29 |
print(f"Error initializing model: {str(e)}")
|
@@ -31,42 +32,39 @@ class ModelHandler:
|
|
31 |
|
32 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
33 |
try:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
return_tensors="pt",
|
41 |
truncation=True,
|
42 |
max_length=512
|
43 |
-
).to(self.device)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
54 |
|
55 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
|
57 |
-
|
|
|
58 |
gc.collect()
|
59 |
if torch.cuda.is_available():
|
60 |
torch.cuda.empty_cache()
|
61 |
|
62 |
return response
|
63 |
-
except Exception as e:
|
64 |
-
return f"Error generating response: {str(e)}"
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
torch.cuda.empty_cache()
|
70 |
|
71 |
class HealthData:
|
72 |
def __init__(self):
|
@@ -116,36 +114,36 @@ class HealthAssistant:
|
|
116 |
self.data = HealthData()
|
117 |
self.request_count = 0
|
118 |
|
119 |
-
def _create_prompt(self, message: str, history: List = None) -> str:
|
120 |
-
prompt_parts = ["You are a helpful healthcare assistant."]
|
121 |
-
|
122 |
-
# Add health context
|
123 |
-
health_context = self.data.get_health_context()
|
124 |
-
if health_context != "No health data available.":
|
125 |
-
prompt_parts.append(f"Current health information:\n{health_context}")
|
126 |
-
|
127 |
-
# Add conversation history
|
128 |
-
if history:
|
129 |
-
prompt_parts.append("Previous conversation:")
|
130 |
-
for user_msg, bot_msg in history[-3:]:
|
131 |
-
prompt_parts.append(f"User: {user_msg}")
|
132 |
-
prompt_parts.append(f"Assistant: {bot_msg}")
|
133 |
-
|
134 |
-
# Add current question
|
135 |
-
prompt_parts.append(f"User: {message}")
|
136 |
-
prompt_parts.append("Assistant:")
|
137 |
-
|
138 |
-
return "\n\n".join(prompt_parts)
|
139 |
-
|
140 |
def get_response(self, message: str, history: List = None) -> str:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
class HealthAssistantUI:
|
151 |
def __init__(self):
|
|
|
2 |
import pandas as pd
|
3 |
from datetime import datetime
|
4 |
import torch
|
5 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
import gc
|
7 |
+
from typing import List, Dict
|
8 |
import os
|
9 |
|
10 |
class ModelHandler:
|
11 |
def __init__(self):
|
12 |
+
self.model_name = "google/flan-t5-base"
|
13 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
print(f"Using device: {self.device}")
|
|
|
15 |
self.initialize_model()
|
16 |
+
|
17 |
def initialize_model(self):
|
18 |
try:
|
19 |
+
print(f"Loading model: {self.model_name}")
|
20 |
+
self.tokenizer = T5Tokenizer.from_pretrained(self.model_name)
|
21 |
+
self.model = T5ForConditionalGeneration.from_pretrained(
|
22 |
self.model_name,
|
23 |
torch_dtype=torch.float32,
|
24 |
low_cpu_mem_usage=True
|
25 |
)
|
26 |
self.model.to(self.device)
|
27 |
+
print("Model loaded successfully")
|
28 |
return True
|
29 |
except Exception as e:
|
30 |
print(f"Error initializing model: {str(e)}")
|
|
|
32 |
|
33 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
34 |
try:
|
35 |
+
# Format prompt for T5
|
36 |
+
formatted_prompt = f"Answer the health question: {prompt}"
|
37 |
+
|
38 |
+
# Generate response
|
39 |
+
input_ids = self.tokenizer(
|
40 |
+
formatted_prompt,
|
41 |
return_tensors="pt",
|
42 |
truncation=True,
|
43 |
max_length=512
|
44 |
+
).input_ids.to(self.device)
|
45 |
|
46 |
+
outputs = self.model.generate(
|
47 |
+
input_ids,
|
48 |
+
max_length=max_length,
|
49 |
+
min_length=20,
|
50 |
+
num_beams=2,
|
51 |
+
temperature=0.7,
|
52 |
+
do_sample=True
|
53 |
+
)
|
|
|
54 |
|
55 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
|
57 |
+
# Memory cleanup
|
58 |
+
del outputs, input_ids
|
59 |
gc.collect()
|
60 |
if torch.cuda.is_available():
|
61 |
torch.cuda.empty_cache()
|
62 |
|
63 |
return response
|
|
|
|
|
64 |
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error in generate_response: {str(e)}")
|
67 |
+
return "I apologize, but I encountered an error processing your request."
|
|
|
68 |
|
69 |
class HealthData:
|
70 |
def __init__(self):
|
|
|
114 |
self.data = HealthData()
|
115 |
self.request_count = 0
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def get_response(self, message: str, history: List = None) -> str:
|
118 |
+
try:
|
119 |
+
# Prepare context
|
120 |
+
context = self.data.get_health_context()
|
121 |
+
|
122 |
+
# Format prompt with context and history
|
123 |
+
prompt = "Given the following context:\n"
|
124 |
+
prompt += f"{context}\n\n"
|
125 |
|
126 |
+
if history:
|
127 |
+
prompt += "Previous conversation:\n"
|
128 |
+
for user_msg, bot_msg in history[-3:]: # Last 3 exchanges
|
129 |
+
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
130 |
+
|
131 |
+
prompt += f"Current question: {message}"
|
132 |
+
|
133 |
+
# Get response
|
134 |
+
response = self.model.generate_response(prompt)
|
135 |
+
|
136 |
+
# Memory management
|
137 |
+
if self.request_count % 5 == 0:
|
138 |
+
gc.collect()
|
139 |
+
if torch.cuda.is_available():
|
140 |
+
torch.cuda.empty_cache()
|
141 |
+
|
142 |
+
return response
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
print(f"Error in get_response: {str(e)}")
|
146 |
+
return "I apologize, but I encountered an error. Please try again."
|
147 |
|
148 |
class HealthAssistantUI:
|
149 |
def __init__(self):
|