Update app.py
Browse files
app.py
CHANGED
@@ -13,13 +13,10 @@ logging.basicConfig(
|
|
13 |
)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
# Force CPU usage and set memory optimizations
|
17 |
-
torch.set_num_threads(4)
|
18 |
-
|
19 |
class HealthAssistant:
|
20 |
def __init__(self, use_smaller_model=True):
|
21 |
if use_smaller_model:
|
22 |
-
self.model_name = "
|
23 |
else:
|
24 |
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
25 |
|
@@ -46,11 +43,10 @@ class HealthAssistant:
|
|
46 |
trust_remote_code=True
|
47 |
)
|
48 |
|
49 |
-
self.model = self.model.to("cpu")
|
50 |
-
|
51 |
if self.tokenizer.pad_token is None:
|
52 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
53 |
|
|
|
54 |
logger.info("Model loaded successfully")
|
55 |
return True
|
56 |
|
@@ -58,19 +54,116 @@ class HealthAssistant:
|
|
58 |
logger.error(f"Error in model initialization: {str(e)}")
|
59 |
raise
|
60 |
|
61 |
-
def
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def generate_response(self, message: str, history: List = None) -> str:
|
67 |
try:
|
68 |
-
if not self.
|
69 |
-
return "System is
|
70 |
|
71 |
-
#
|
72 |
-
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# Tokenize
|
75 |
inputs = self.tokenizer(
|
76 |
prompt,
|
@@ -84,11 +177,11 @@ class HealthAssistant:
|
|
84 |
with torch.no_grad():
|
85 |
outputs = self.model.generate(
|
86 |
inputs["input_ids"],
|
87 |
-
max_new_tokens=
|
88 |
-
num_beams=
|
89 |
-
|
90 |
-
temperature=0.7,
|
91 |
top_p=0.9,
|
|
|
92 |
pad_token_id=self.tokenizer.pad_token_id,
|
93 |
eos_token_id=self.tokenizer.eos_token_id
|
94 |
)
|
@@ -99,6 +192,9 @@ class HealthAssistant:
|
|
99 |
skip_special_tokens=True
|
100 |
)
|
101 |
|
|
|
|
|
|
|
102 |
# Cleanup
|
103 |
del outputs, inputs
|
104 |
gc.collect()
|
@@ -107,30 +203,45 @@ class HealthAssistant:
|
|
107 |
|
108 |
except Exception as e:
|
109 |
logger.error(f"Error generating response: {str(e)}")
|
110 |
-
return "I apologize, but I encountered an error. Please try
|
111 |
|
112 |
-
def
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
125 |
|
126 |
-
|
127 |
-
f"User: {message}",
|
128 |
-
"Assistant:"
|
129 |
-
])
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
def _get_health_context(self) -> str:
|
|
|
134 |
context_parts = []
|
135 |
|
136 |
if self.metrics:
|
@@ -150,8 +261,7 @@ class HealthAssistant:
|
|
150 |
med_info += f" | Note: {med['Notes']}"
|
151 |
context_parts.append(med_info)
|
152 |
|
153 |
-
return "\n".join(context_parts) if context_parts else ""
|
154 |
-
|
155 |
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
|
156 |
try:
|
157 |
self.metrics.append({
|
@@ -182,8 +292,6 @@ class GradioInterface:
|
|
182 |
try:
|
183 |
logger.info("Initializing Health Assistant...")
|
184 |
self.assistant = HealthAssistant(use_smaller_model=True)
|
185 |
-
if not self.assistant.is_initialized():
|
186 |
-
raise RuntimeError("Health Assistant failed to initialize properly")
|
187 |
logger.info("Health Assistant initialized successfully")
|
188 |
except Exception as e:
|
189 |
logger.error(f"Failed to initialize Health Assistant: {e}")
|
@@ -193,16 +301,27 @@ class GradioInterface:
|
|
193 |
if not message.strip():
|
194 |
return "", history
|
195 |
|
|
|
196 |
response = self.assistant.generate_response(message, history)
|
|
|
|
|
197 |
history.append([message, response])
|
|
|
|
|
198 |
return "", history
|
199 |
|
200 |
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
|
201 |
if not all([weight is not None, steps is not None, sleep is not None]):
|
202 |
return "β οΈ Please fill in all metrics."
|
203 |
|
|
|
|
|
|
|
204 |
if self.assistant.add_metrics(weight, steps, sleep):
|
205 |
-
return "β
Health metrics saved successfully!
|
|
|
|
|
|
|
206 |
return "β Error saving metrics."
|
207 |
|
208 |
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str:
|
@@ -210,48 +329,86 @@ class GradioInterface:
|
|
210 |
return "β οΈ Please fill in all required fields."
|
211 |
|
212 |
if self.assistant.add_medication(name, dosage, time, notes):
|
213 |
-
return "β
Medication added successfully!
|
|
|
|
|
|
|
|
|
214 |
return "β Error adding medication."
|
215 |
|
216 |
def create_interface(self):
|
217 |
-
with gr.Blocks(title="Health Assistant") as demo:
|
218 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
with gr.Tabs():
|
221 |
# Chat Interface
|
222 |
-
with gr.Tab("π¬
|
223 |
chatbot = gr.Chatbot(
|
224 |
value=[],
|
225 |
-
height=450
|
|
|
226 |
)
|
227 |
with gr.Row():
|
228 |
msg = gr.Textbox(
|
229 |
-
placeholder="
|
230 |
lines=2,
|
231 |
show_label=False,
|
232 |
scale=9
|
233 |
)
|
234 |
-
send_btn = gr.Button("Send", scale=1)
|
235 |
-
clear_btn = gr.Button("Clear Chat")
|
236 |
|
237 |
# Health Metrics
|
238 |
with gr.Tab("π Health Metrics"):
|
239 |
with gr.Row():
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
# Medication Manager
|
247 |
with gr.Tab("π Medication Manager"):
|
248 |
with gr.Row():
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
# Event handlers
|
257 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
@@ -270,16 +427,26 @@ class GradioInterface:
|
|
270 |
outputs=[med_status]
|
271 |
)
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
demo.queue()
|
274 |
|
275 |
return demo
|
276 |
|
277 |
def main():
|
278 |
try:
|
279 |
-
logger.info("Starting
|
280 |
interface = GradioInterface()
|
281 |
demo = interface.create_interface()
|
282 |
-
logger.info("Launching
|
283 |
demo.launch(
|
284 |
server_name="0.0.0.0",
|
285 |
server_port=7860,
|
|
|
13 |
)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
|
|
|
|
|
|
16 |
class HealthAssistant:
|
17 |
def __init__(self, use_smaller_model=True):
|
18 |
if use_smaller_model:
|
19 |
+
self.model_name = "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext"
|
20 |
else:
|
21 |
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
22 |
|
|
|
43 |
trust_remote_code=True
|
44 |
)
|
45 |
|
|
|
|
|
46 |
if self.tokenizer.pad_token is None:
|
47 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
48 |
|
49 |
+
self.model = self.model.to("cpu")
|
50 |
logger.info("Model loaded successfully")
|
51 |
return True
|
52 |
|
|
|
54 |
logger.error(f"Error in model initialization: {str(e)}")
|
55 |
raise
|
56 |
|
57 |
+
def _detect_query_type(self, message: str) -> str:
|
58 |
+
"""Detect type of medical query"""
|
59 |
+
message_lower = message.lower()
|
60 |
+
|
61 |
+
emergency_keywords = ["emergency", "severe pain", "chest pain", "can't breathe",
|
62 |
+
"unconscious", "stroke", "heart attack"]
|
63 |
+
if any(keyword in message_lower for keyword in emergency_keywords):
|
64 |
+
return "emergency_guidance"
|
65 |
+
|
66 |
+
symptom_keywords = ["symptom", "feel", "pain", "ache", "suffering", "experiencing"]
|
67 |
+
if any(keyword in message_lower for keyword in symptom_keywords):
|
68 |
+
return "symptom_check"
|
69 |
+
|
70 |
+
medication_keywords = ["medicine", "drug", "pill", "prescription", "medication", "dose"]
|
71 |
+
if any(keyword in message_lower for keyword in medication_keywords):
|
72 |
+
return "medication_info"
|
73 |
+
|
74 |
+
lifestyle_keywords = ["exercise", "diet", "sleep", "stress", "healthy", "lifestyle"]
|
75 |
+
if any(keyword in message_lower for keyword in lifestyle_keywords):
|
76 |
+
return "lifestyle_advice"
|
77 |
+
|
78 |
+
return "general"
|
79 |
+
|
80 |
+
def _get_specialized_prompt(self, query_type: str, message: str) -> str:
|
81 |
+
"""Get specialized medical prompts"""
|
82 |
+
base_context = f"""Current Health Context:
|
83 |
+
{self._get_health_context()}
|
84 |
+
|
85 |
+
"""
|
86 |
+
|
87 |
+
prompts = {
|
88 |
+
"symptom_check": f"""{base_context}
|
89 |
+
Analyze these symptoms professionally:
|
90 |
+
Patient's Description: {message}
|
91 |
+
|
92 |
+
Provide structured analysis:
|
93 |
+
1. Symptoms identified
|
94 |
+
2. Possible causes
|
95 |
+
3. Severity assessment
|
96 |
+
4. Recommended actions
|
97 |
+
5. When to seek medical care
|
98 |
+
""",
|
99 |
+
|
100 |
+
"medication_info": f"""{base_context}
|
101 |
+
Regarding medication inquiry:
|
102 |
+
Query: {message}
|
103 |
+
|
104 |
+
Provide structured information:
|
105 |
+
1. General medication information
|
106 |
+
2. Common usage guidelines
|
107 |
+
3. Important considerations
|
108 |
+
4. General precautions
|
109 |
+
5. When to consult healthcare provider
|
110 |
+
""",
|
111 |
+
|
112 |
+
"lifestyle_advice": f"""{base_context}
|
113 |
+
Health and Lifestyle Query:
|
114 |
+
Question: {message}
|
115 |
+
|
116 |
+
Provide structured guidance:
|
117 |
+
1. Evidence-based recommendations
|
118 |
+
2. Implementation steps
|
119 |
+
3. Expected benefits
|
120 |
+
4. Safety considerations
|
121 |
+
5. Progress monitoring tips
|
122 |
+
""",
|
123 |
+
|
124 |
+
"emergency_guidance": f"""{base_context}
|
125 |
+
URGENT Health Situation:
|
126 |
+
Condition: {message}
|
127 |
+
|
128 |
+
Critical guidance:
|
129 |
+
1. Severity assessment
|
130 |
+
2. Immediate actions needed
|
131 |
+
3. Emergency signs
|
132 |
+
4. When to call emergency services
|
133 |
+
5. Precautions while waiting
|
134 |
+
β οΈ SEEK IMMEDIATE MEDICAL ATTENTION FOR EMERGENCIES
|
135 |
+
""",
|
136 |
+
|
137 |
+
"general": f"""{base_context}
|
138 |
+
Medical Query:
|
139 |
+
{message}
|
140 |
+
|
141 |
+
Provide structured response:
|
142 |
+
1. Understanding of the query
|
143 |
+
2. Relevant medical information
|
144 |
+
3. Professional guidance
|
145 |
+
4. Important considerations
|
146 |
+
5. Additional recommendations
|
147 |
+
"""
|
148 |
+
}
|
149 |
+
|
150 |
+
return prompts.get(query_type, prompts["general"])
|
151 |
|
152 |
def generate_response(self, message: str, history: List = None) -> str:
|
153 |
try:
|
154 |
+
if not hasattr(self, 'model') or self.model is None:
|
155 |
+
return "System is initializing. Please try again in a moment."
|
156 |
|
157 |
+
# Detect query type and get appropriate prompt
|
158 |
+
query_type = self._detect_query_type(message)
|
159 |
+
prompt = self._get_specialized_prompt(query_type, message)
|
160 |
|
161 |
+
# Add conversation history if available
|
162 |
+
if history:
|
163 |
+
prompt += "\n\nPrevious conversation context:"
|
164 |
+
for prev_msg, prev_response in history[-2:]: # Last 2 exchanges
|
165 |
+
prompt += f"\nQ: {prev_msg}\nA: {prev_response}\n"
|
166 |
+
|
167 |
# Tokenize
|
168 |
inputs = self.tokenizer(
|
169 |
prompt,
|
|
|
177 |
with torch.no_grad():
|
178 |
outputs = self.model.generate(
|
179 |
inputs["input_ids"],
|
180 |
+
max_new_tokens=150,
|
181 |
+
num_beams=2,
|
182 |
+
temperature=0.3,
|
|
|
183 |
top_p=0.9,
|
184 |
+
no_repeat_ngram_size=3,
|
185 |
pad_token_id=self.tokenizer.pad_token_id,
|
186 |
eos_token_id=self.tokenizer.eos_token_id
|
187 |
)
|
|
|
192 |
skip_special_tokens=True
|
193 |
)
|
194 |
|
195 |
+
# Clean and format response
|
196 |
+
response = self._format_response(response, query_type)
|
197 |
+
|
198 |
# Cleanup
|
199 |
del outputs, inputs
|
200 |
gc.collect()
|
|
|
203 |
|
204 |
except Exception as e:
|
205 |
logger.error(f"Error generating response: {str(e)}")
|
206 |
+
return "I apologize, but I encountered an error. Please try rephrasing your question."
|
207 |
|
208 |
+
def _format_response(self, response: str, query_type: str) -> str:
|
209 |
+
"""Format and clean the response"""
|
210 |
+
# Remove repeated headers and clean up
|
211 |
+
lines = [line.strip() for line in response.split('\n') if line.strip()]
|
212 |
+
clean_lines = []
|
213 |
+
seen = set()
|
214 |
+
|
215 |
+
for line in lines:
|
216 |
+
# Skip common headers and duplicates
|
217 |
+
if any(header in line for header in ["Location:", "Date:", "M.D.", "Medical"]):
|
218 |
+
continue
|
219 |
+
if line not in seen:
|
220 |
+
seen.add(line)
|
221 |
+
clean_lines.append(line)
|
222 |
|
223 |
+
# Add appropriate emoji based on query type
|
224 |
+
emoji_map = {
|
225 |
+
"emergency_guidance": "π¨",
|
226 |
+
"symptom_check": "π",
|
227 |
+
"medication_info": "π",
|
228 |
+
"lifestyle_advice": "π‘",
|
229 |
+
"general": "βΉοΈ"
|
230 |
+
}
|
231 |
|
232 |
+
emoji = emoji_map.get(query_type, "βΉοΈ")
|
|
|
|
|
|
|
233 |
|
234 |
+
# Combine and format
|
235 |
+
formatted_response = f"{emoji} " + "\n".join(clean_lines)
|
236 |
+
|
237 |
+
# Add disclaimer if needed
|
238 |
+
if query_type in ["emergency_guidance", "medication_info"]:
|
239 |
+
formatted_response += "\n\nβ οΈ This is general information only. Always consult healthcare professionals for medical advice."
|
240 |
+
|
241 |
+
return formatted_response
|
242 |
|
243 |
def _get_health_context(self) -> str:
|
244 |
+
"""Get user's health context"""
|
245 |
context_parts = []
|
246 |
|
247 |
if self.metrics:
|
|
|
261 |
med_info += f" | Note: {med['Notes']}"
|
262 |
context_parts.append(med_info)
|
263 |
|
264 |
+
return "\n".join(context_parts) if context_parts else "No health data available"
|
|
|
265 |
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
|
266 |
try:
|
267 |
self.metrics.append({
|
|
|
292 |
try:
|
293 |
logger.info("Initializing Health Assistant...")
|
294 |
self.assistant = HealthAssistant(use_smaller_model=True)
|
|
|
|
|
295 |
logger.info("Health Assistant initialized successfully")
|
296 |
except Exception as e:
|
297 |
logger.error(f"Failed to initialize Health Assistant: {e}")
|
|
|
301 |
if not message.strip():
|
302 |
return "", history
|
303 |
|
304 |
+
# Generate response
|
305 |
response = self.assistant.generate_response(message, history)
|
306 |
+
|
307 |
+
# Update history
|
308 |
history.append([message, response])
|
309 |
+
|
310 |
+
# Clear input and return updated history
|
311 |
return "", history
|
312 |
|
313 |
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
|
314 |
if not all([weight is not None, steps is not None, sleep is not None]):
|
315 |
return "β οΈ Please fill in all metrics."
|
316 |
|
317 |
+
if weight <= 0 or steps < 0 or sleep < 0:
|
318 |
+
return "β οΈ Please enter valid positive numbers."
|
319 |
+
|
320 |
if self.assistant.add_metrics(weight, steps, sleep):
|
321 |
+
return f"""β
Health metrics saved successfully!
|
322 |
+
β’ Weight: {weight} kg
|
323 |
+
β’ Steps: {steps}
|
324 |
+
β’ Sleep: {sleep} hours"""
|
325 |
return "β Error saving metrics."
|
326 |
|
327 |
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str:
|
|
|
329 |
return "β οΈ Please fill in all required fields."
|
330 |
|
331 |
if self.assistant.add_medication(name, dosage, time, notes):
|
332 |
+
return f"""β
Medication added successfully!
|
333 |
+
β’ Medication: {name}
|
334 |
+
β’ Dosage: {dosage}
|
335 |
+
β’ Time: {time}
|
336 |
+
β’ Notes: {notes if notes else 'None'}"""
|
337 |
return "β Error adding medication."
|
338 |
|
339 |
def create_interface(self):
|
340 |
+
with gr.Blocks(title="Medical Health Assistant", theme=gr.themes.Soft()) as demo:
|
341 |
+
gr.Markdown("""
|
342 |
+
# π₯ Medical Health Assistant
|
343 |
+
|
344 |
+
This AI assistant provides medical information and health guidance.
|
345 |
+
**Note**: This is not a replacement for professional medical advice.
|
346 |
+
""")
|
347 |
|
348 |
with gr.Tabs():
|
349 |
# Chat Interface
|
350 |
+
with gr.Tab("π¬ Medical Consultation"):
|
351 |
chatbot = gr.Chatbot(
|
352 |
value=[],
|
353 |
+
height=450,
|
354 |
+
bubble=True
|
355 |
)
|
356 |
with gr.Row():
|
357 |
msg = gr.Textbox(
|
358 |
+
placeholder="Describe your medical concern... (Press Enter)",
|
359 |
lines=2,
|
360 |
show_label=False,
|
361 |
scale=9
|
362 |
)
|
363 |
+
send_btn = gr.Button("π¬ Send", scale=1)
|
364 |
+
clear_btn = gr.Button("π Clear Chat")
|
365 |
|
366 |
# Health Metrics
|
367 |
with gr.Tab("π Health Metrics"):
|
368 |
with gr.Row():
|
369 |
+
with gr.Column():
|
370 |
+
gr.Markdown("### Enter Your Health Metrics")
|
371 |
+
weight_input = gr.Number(
|
372 |
+
label="Weight (kg)",
|
373 |
+
minimum=0,
|
374 |
+
maximum=500
|
375 |
+
)
|
376 |
+
steps_input = gr.Number(
|
377 |
+
label="Steps",
|
378 |
+
minimum=0,
|
379 |
+
maximum=100000
|
380 |
+
)
|
381 |
+
sleep_input = gr.Number(
|
382 |
+
label="Hours Slept",
|
383 |
+
minimum=0,
|
384 |
+
maximum=24
|
385 |
+
)
|
386 |
+
metrics_btn = gr.Button("π Save Metrics")
|
387 |
+
metrics_status = gr.Markdown()
|
388 |
|
389 |
# Medication Manager
|
390 |
with gr.Tab("π Medication Manager"):
|
391 |
with gr.Row():
|
392 |
+
with gr.Column():
|
393 |
+
gr.Markdown("### Add Medication Details")
|
394 |
+
med_name = gr.Textbox(
|
395 |
+
label="Medication Name",
|
396 |
+
placeholder="Enter medication name"
|
397 |
+
)
|
398 |
+
med_dosage = gr.Textbox(
|
399 |
+
label="Dosage",
|
400 |
+
placeholder="e.g., 500mg"
|
401 |
+
)
|
402 |
+
med_time = gr.Textbox(
|
403 |
+
label="Time",
|
404 |
+
placeholder="e.g., 9:00 AM"
|
405 |
+
)
|
406 |
+
med_notes = gr.Textbox(
|
407 |
+
label="Notes (optional)",
|
408 |
+
placeholder="Additional instructions or notes"
|
409 |
+
)
|
410 |
+
med_btn = gr.Button("π Add Medication")
|
411 |
+
med_status = gr.Markdown()
|
412 |
|
413 |
# Event handlers
|
414 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
|
|
427 |
outputs=[med_status]
|
428 |
)
|
429 |
|
430 |
+
# Add helpful information
|
431 |
+
gr.Markdown("""
|
432 |
+
### β οΈ Important Medical Disclaimer
|
433 |
+
This AI assistant provides general health information only.
|
434 |
+
- Not a replacement for professional medical advice
|
435 |
+
- Always consult healthcare professionals for medical decisions
|
436 |
+
- Seek immediate medical attention for emergencies
|
437 |
+
""")
|
438 |
+
|
439 |
+
# Enable queuing for better performance
|
440 |
demo.queue()
|
441 |
|
442 |
return demo
|
443 |
|
444 |
def main():
|
445 |
try:
|
446 |
+
logger.info("Starting Medical Health Assistant...")
|
447 |
interface = GradioInterface()
|
448 |
demo = interface.create_interface()
|
449 |
+
logger.info("Launching interface...")
|
450 |
demo.launch(
|
451 |
server_name="0.0.0.0",
|
452 |
server_port=7860,
|