Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import transformers
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import logging
|
6 |
from typing import List, Dict
|
7 |
import gc
|
8 |
import os
|
9 |
|
10 |
-
# Setup logging
|
11 |
logging.basicConfig(
|
12 |
level=logging.INFO,
|
13 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
14 |
)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
transformers.logging.set_verbosity_info()
|
20 |
|
21 |
class HealthAssistant:
|
22 |
def __init__(self, use_smaller_model=True):
|
23 |
-
# Use a smaller model for testing/CPU
|
24 |
if use_smaller_model:
|
25 |
-
self.model_name = "facebook/opt-125m"
|
26 |
else:
|
27 |
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
28 |
|
@@ -36,53 +33,40 @@ class HealthAssistant:
|
|
36 |
try:
|
37 |
logger.info(f"Starting model initialization: {self.model_name}")
|
38 |
|
39 |
-
# First try loading tokenizer
|
40 |
-
logger.info("Loading tokenizer...")
|
41 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
42 |
self.model_name,
|
43 |
trust_remote_code=True
|
44 |
)
|
45 |
-
|
46 |
-
raise ValueError("Failed to load tokenizer")
|
47 |
-
logger.info("Tokenizer loaded successfully")
|
48 |
|
49 |
-
# Then load the model
|
50 |
-
logger.info("Loading model...")
|
51 |
self.model = AutoModelForCausalLM.from_pretrained(
|
52 |
self.model_name,
|
53 |
-
torch_dtype=torch.float32,
|
54 |
low_cpu_mem_usage=True,
|
55 |
trust_remote_code=True
|
56 |
)
|
57 |
-
if self.model is None:
|
58 |
-
raise ValueError("Failed to load model")
|
59 |
|
60 |
-
# Move model to CPU explicitly
|
61 |
self.model = self.model.to("cpu")
|
62 |
-
logger.info("Model loaded successfully and moved to CPU")
|
63 |
|
64 |
-
# Set padding token if needed
|
65 |
if self.tokenizer.pad_token is None:
|
66 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
67 |
-
logger.info("Set padding token")
|
68 |
|
|
|
69 |
return True
|
70 |
-
|
71 |
except Exception as e:
|
72 |
logger.error(f"Error in model initialization: {str(e)}")
|
73 |
-
raise
|
74 |
|
75 |
def is_initialized(self):
|
76 |
-
"""Check if model is properly initialized"""
|
77 |
return (self.model is not None and
|
78 |
self.tokenizer is not None and
|
79 |
-
hasattr(self.model, 'generate')
|
80 |
-
hasattr(self.tokenizer, 'encode'))
|
81 |
|
82 |
def generate_response(self, message: str, history: List = None) -> str:
|
83 |
try:
|
84 |
if not self.is_initialized():
|
85 |
-
|
86 |
|
87 |
# Prepare prompt
|
88 |
prompt = self._prepare_prompt(message, history)
|
@@ -94,7 +78,7 @@ class HealthAssistant:
|
|
94 |
padding=True,
|
95 |
truncation=True,
|
96 |
max_length=512
|
97 |
-
)
|
98 |
|
99 |
# Generate
|
100 |
with torch.no_grad():
|
@@ -127,16 +111,16 @@ class HealthAssistant:
|
|
127 |
|
128 |
def _prepare_prompt(self, message: str, history: List = None) -> str:
|
129 |
parts = [
|
130 |
-
"You are a helpful healthcare assistant
|
131 |
self._get_health_context() or "No health data available yet."
|
132 |
]
|
133 |
|
134 |
if history:
|
135 |
parts.append("Previous conversation:")
|
136 |
-
for
|
137 |
parts.extend([
|
138 |
-
f"User: {
|
139 |
-
f"Assistant: {
|
140 |
])
|
141 |
|
142 |
parts.extend([
|
@@ -197,7 +181,7 @@ class GradioInterface:
|
|
197 |
def __init__(self):
|
198 |
try:
|
199 |
logger.info("Initializing Health Assistant...")
|
200 |
-
self.assistant = HealthAssistant(use_smaller_model=True)
|
201 |
if not self.assistant.is_initialized():
|
202 |
raise RuntimeError("Health Assistant failed to initialize properly")
|
203 |
logger.info("Health Assistant initialized successfully")
|
@@ -230,14 +214,15 @@ class GradioInterface:
|
|
230 |
return "β Error adding medication."
|
231 |
|
232 |
def create_interface(self):
|
233 |
-
with gr.Blocks(title="Health Assistant"
|
234 |
gr.Markdown("# π₯ AI Health Assistant")
|
235 |
|
236 |
with gr.Tabs():
|
|
|
237 |
with gr.Tab("π¬ Health Chat"):
|
238 |
chatbot = gr.Chatbot(
|
239 |
-
|
240 |
-
|
241 |
)
|
242 |
with gr.Row():
|
243 |
msg = gr.Textbox(
|
@@ -249,6 +234,7 @@ class GradioInterface:
|
|
249 |
send_btn = gr.Button("Send", scale=1)
|
250 |
clear_btn = gr.Button("Clear Chat")
|
251 |
|
|
|
252 |
with gr.Tab("π Health Metrics"):
|
253 |
with gr.Row():
|
254 |
weight_input = gr.Number(label="Weight (kg)")
|
@@ -257,6 +243,7 @@ class GradioInterface:
|
|
257 |
metrics_btn = gr.Button("Save Metrics")
|
258 |
metrics_status = gr.Markdown()
|
259 |
|
|
|
260 |
with gr.Tab("π Medication Manager"):
|
261 |
with gr.Row():
|
262 |
med_name = gr.Textbox(label="Medication Name")
|
@@ -266,6 +253,7 @@ class GradioInterface:
|
|
266 |
med_btn = gr.Button("Add Medication")
|
267 |
med_status = gr.Markdown()
|
268 |
|
|
|
269 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
270 |
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
|
271 |
clear_btn.click(lambda: [], None, chatbot)
|
@@ -282,6 +270,8 @@ class GradioInterface:
|
|
282 |
outputs=[med_status]
|
283 |
)
|
284 |
|
|
|
|
|
285 |
return demo
|
286 |
|
287 |
def main():
|
@@ -291,10 +281,9 @@ def main():
|
|
291 |
demo = interface.create_interface()
|
292 |
logger.info("Launching Gradio interface...")
|
293 |
demo.launch(
|
294 |
-
share=False,
|
295 |
server_name="0.0.0.0",
|
296 |
server_port=7860,
|
297 |
-
|
298 |
)
|
299 |
except Exception as e:
|
300 |
logger.error(f"Error starting application: {e}")
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import logging
|
5 |
from typing import List, Dict
|
6 |
import gc
|
7 |
import os
|
8 |
|
9 |
+
# Setup logging
|
10 |
logging.basicConfig(
|
11 |
level=logging.INFO,
|
12 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
13 |
)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# Force CPU usage and set memory optimizations
|
17 |
+
torch.set_num_threads(4)
|
|
|
18 |
|
19 |
class HealthAssistant:
|
20 |
def __init__(self, use_smaller_model=True):
|
|
|
21 |
if use_smaller_model:
|
22 |
+
self.model_name = "facebook/opt-125m"
|
23 |
else:
|
24 |
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
25 |
|
|
|
33 |
try:
|
34 |
logger.info(f"Starting model initialization: {self.model_name}")
|
35 |
|
|
|
|
|
36 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
37 |
self.model_name,
|
38 |
trust_remote_code=True
|
39 |
)
|
40 |
+
logger.info("Tokenizer loaded")
|
|
|
|
|
41 |
|
|
|
|
|
42 |
self.model = AutoModelForCausalLM.from_pretrained(
|
43 |
self.model_name,
|
44 |
+
torch_dtype=torch.float32,
|
45 |
low_cpu_mem_usage=True,
|
46 |
trust_remote_code=True
|
47 |
)
|
|
|
|
|
48 |
|
|
|
49 |
self.model = self.model.to("cpu")
|
|
|
50 |
|
|
|
51 |
if self.tokenizer.pad_token is None:
|
52 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
53 |
|
54 |
+
logger.info("Model loaded successfully")
|
55 |
return True
|
56 |
+
|
57 |
except Exception as e:
|
58 |
logger.error(f"Error in model initialization: {str(e)}")
|
59 |
+
raise
|
60 |
|
61 |
def is_initialized(self):
|
|
|
62 |
return (self.model is not None and
|
63 |
self.tokenizer is not None and
|
64 |
+
hasattr(self.model, 'generate'))
|
|
|
65 |
|
66 |
def generate_response(self, message: str, history: List = None) -> str:
|
67 |
try:
|
68 |
if not self.is_initialized():
|
69 |
+
return "System is still initializing. Please try again in a moment."
|
70 |
|
71 |
# Prepare prompt
|
72 |
prompt = self._prepare_prompt(message, history)
|
|
|
78 |
padding=True,
|
79 |
truncation=True,
|
80 |
max_length=512
|
81 |
+
)
|
82 |
|
83 |
# Generate
|
84 |
with torch.no_grad():
|
|
|
111 |
|
112 |
def _prepare_prompt(self, message: str, history: List = None) -> str:
|
113 |
parts = [
|
114 |
+
"You are a helpful healthcare assistant providing accurate and helpful medical information.",
|
115 |
self._get_health_context() or "No health data available yet."
|
116 |
]
|
117 |
|
118 |
if history:
|
119 |
parts.append("Previous conversation:")
|
120 |
+
for h in history[-3:]:
|
121 |
parts.extend([
|
122 |
+
f"User: {h[0]}",
|
123 |
+
f"Assistant: {h[1]}"
|
124 |
])
|
125 |
|
126 |
parts.extend([
|
|
|
181 |
def __init__(self):
|
182 |
try:
|
183 |
logger.info("Initializing Health Assistant...")
|
184 |
+
self.assistant = HealthAssistant(use_smaller_model=True)
|
185 |
if not self.assistant.is_initialized():
|
186 |
raise RuntimeError("Health Assistant failed to initialize properly")
|
187 |
logger.info("Health Assistant initialized successfully")
|
|
|
214 |
return "β Error adding medication."
|
215 |
|
216 |
def create_interface(self):
|
217 |
+
with gr.Blocks(title="Health Assistant") as demo:
|
218 |
gr.Markdown("# π₯ AI Health Assistant")
|
219 |
|
220 |
with gr.Tabs():
|
221 |
+
# Chat Interface
|
222 |
with gr.Tab("π¬ Health Chat"):
|
223 |
chatbot = gr.Chatbot(
|
224 |
+
value=[],
|
225 |
+
height=450
|
226 |
)
|
227 |
with gr.Row():
|
228 |
msg = gr.Textbox(
|
|
|
234 |
send_btn = gr.Button("Send", scale=1)
|
235 |
clear_btn = gr.Button("Clear Chat")
|
236 |
|
237 |
+
# Health Metrics
|
238 |
with gr.Tab("π Health Metrics"):
|
239 |
with gr.Row():
|
240 |
weight_input = gr.Number(label="Weight (kg)")
|
|
|
243 |
metrics_btn = gr.Button("Save Metrics")
|
244 |
metrics_status = gr.Markdown()
|
245 |
|
246 |
+
# Medication Manager
|
247 |
with gr.Tab("π Medication Manager"):
|
248 |
with gr.Row():
|
249 |
med_name = gr.Textbox(label="Medication Name")
|
|
|
253 |
med_btn = gr.Button("Add Medication")
|
254 |
med_status = gr.Markdown()
|
255 |
|
256 |
+
# Event handlers
|
257 |
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
258 |
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
|
259 |
clear_btn.click(lambda: [], None, chatbot)
|
|
|
270 |
outputs=[med_status]
|
271 |
)
|
272 |
|
273 |
+
demo.queue()
|
274 |
+
|
275 |
return demo
|
276 |
|
277 |
def main():
|
|
|
281 |
demo = interface.create_interface()
|
282 |
logger.info("Launching Gradio interface...")
|
283 |
demo.launch(
|
|
|
284 |
server_name="0.0.0.0",
|
285 |
server_port=7860,
|
286 |
+
share=False
|
287 |
)
|
288 |
except Exception as e:
|
289 |
logger.error(f"Error starting application: {e}")
|