lukmanaj's picture
Update app.py
9e98f94 verified
import streamlit as st
import torch
import torchvision
from torchvision import transforms
from PIL import Image
import io
# Define the function to load the model
def load_model(model_path, device):
weights = torchvision.models.DenseNet201_Weights.DEFAULT # best available weight
model = torchvision.models.densenet201(weights=weights).to(device)
model.classifier = torch.nn.Sequential(
torch.nn.Dropout(p=0.2, inplace=True),
torch.nn.Linear(in_features=1920, out_features=2, bias=True)
).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
return model
# Define the function for preprocessing the image
def preprocess_image(image):
transform = transforms.Compose([
transforms.Resize(64),
transforms.ToTensor(),
])
return transform(image)
# Define the function for getting predictions
def get_prediction(model, image, device):
class_names = ['normal','pneumonia']
image = image.unsqueeze(0).to(device) # Add batch dimension and move to device
with torch.no_grad():
pred_logits = model(image)
pred_prob = torch.softmax(pred_logits, dim=1)
pred_label = torch.argmax(pred_prob, dim=1)
return class_names[pred_label.item()], pred_prob.max().item()
# Streamlit app starts here
st.title("Chest X-ray Pneumonia Checking App")
uploaded_file = st.file_uploader("Upload an image of a chest x-ray", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Convert the file-like object to bytes, then open it with PIL
image_bytes = uploaded_file.getvalue()
image = Image.open(io.BytesIO(image_bytes)).convert('RGB') # make it three channel like training set
# Display the uploaded image
st.image(image, caption='Uploaded Image.', use_column_width=True)
# Predict button
if st.button('Predict'):
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model
model_path = 'densenetxray.pth' # Fixed model path
model = load_model(model_path, device)
# Preprocess the image and predict
preprocessed_image = preprocess_image(image)
prediction, probability = get_prediction(model, preprocessed_image, device)
# Display the prediction
st.write(f"Prediction: {prediction}, Probability: {probability:.3f}")