ctm-space / app.py
Haofei Yu
pre-commit checking (#18)
a9c1d92 unverified
raw
history blame
6.99 kB
import os
import sys
import gradio as gr
sys.path.append("./ctm")
from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
ctm = BaseConsciousnessTuringMachine()
ctm.add_supervisor("gpt4_supervisor")
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
def convert_base64(image_array):
image = Image.fromarray(image_array)
buffer = io.BytesIO()
image.save(buffer, format="PNG")
byte_data = buffer.getvalue()
base64_string = base64.b64encode(byte_data).decode("utf-8")
return base64_string
def introduction():
with gr.Column(scale=2):
gr.Image("images/CTM-AI.png", elem_id="banner-image", show_label=False)
with gr.Column(scale=5):
gr.Markdown(
"""Consciousness Turing Machine Demo
"""
)
def add_processor(processor_name, display_name, state):
print("add processor ", processor_name)
ctm.add_processor(processor_name)
print(ctm.processor_group_map)
print(len(ctm.processor_list))
return display_name + " (added)"
def processor_tab():
# Categorized model names
text_processors = [
"gpt4_text_emotion_processor",
"gpt4_text_summary_processor",
"gpt4_speaker_intent_processor",
"roberta_text_sentiment_processor",
]
vision_processors = [
"gpt4v_cloth_fashion_processor",
"gpt4v_face_emotion_processor",
"gpt4v_ocr_processor",
"gpt4v_posture",
"gpt4v_scene_location_processor",
]
with gr.Blocks():
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Text Processors")
for model_name in text_processors:
display_name = (
model_name.replace("processor", "")
.replace("_", " ")
.title()
)
button = gr.Button(display_name)
processor_name = gr.Textbox(
value=model_name, visible=False
)
display_name = gr.Textbox(
value=display_name, visible=False
)
button.click(
fn=add_processor,
inputs=[processor_name, display_name, gr.State()],
outputs=[button],
)
with gr.Column(scale=1):
gr.Markdown("### Vision Processors")
for model_name in vision_processors:
display_name = (
model_name.replace("processor", "")
.replace("_", " ")
.title()
)
button = gr.Button(display_name)
processor_name = gr.Textbox(
value=model_name, visible=False
)
display_name = gr.Textbox(
value=display_name, visible=False
)
button.click(
fn=add_processor,
inputs=[processor_name, display_name, gr.State()],
outputs=[button],
)
def forward(query, content, image, state):
state["question"] = query
ask_processors_output_info, state = ask_processors(
query, content, image, state
)
uptree_competition_output_info, state = uptree_competition(state)
ask_supervisor_output_info, state = ask_supervisor(state)
ctm.downtree_broadcast(state["winning_output"])
ctm.link_form(state["processor_output"])
return (
ask_processors_output_info,
uptree_competition_output_info,
ask_supervisor_output_info,
state,
)
def ask_processors(query, text, image, state):
# Simulate processing here
processor_output = ctm.ask_processors(
query=query,
text=text,
image=image,
)
output_info = ""
for name, info in processor_output.items():
output_info += f"{name}: {info['gist']}\n"
state["processor_output"] = processor_output
return output_info, state
def uptree_competition(state):
winning_output = ctm.uptree_competition(state["processor_output"])
state["winning_output"] = winning_output
output_info = (
"The winning processor is: {}\nThe winning gist is: {}\n".format(
winning_output["name"], winning_output["gist"]
)
)
return output_info, state
def ask_supervisor(state):
question = state["question"]
winning_output = state["winning_output"]
answer, score = ctm.ask_supervisor(question, winning_output)
output_info = f'The answer to the query "{question}" is: {answer}\nThe confidence for answering is: {score}\n'
state["answer"] = answer
state["score"] = score
return output_info, state
def interface_tab():
with gr.Blocks():
state = gr.State({}) # State to hold and pass values
with gr.Column():
# Inputs
text = gr.Textbox(label="Enter your text here")
query = gr.Textbox(label="Enter your query here")
image = gr.Image(label="Upload your image")
# audio = gr.Audio(label="Upload or Record Audio")
# video = gr.Video(label="Upload or Record Video")
# Processing buttons
forward_button = gr.Button("Start CTM forward process")
# Outputs
processors_output = gr.Textbox(
label="Processors Output", visible=True
)
competition_output = gr.Textbox(
label="Up-tree Competition Output", visible=True
)
supervisor_output = gr.Textbox(
label="Supervisor Output", visible=True
)
# Set up button to start or continue processing
forward_button.click(
fn=forward,
inputs=[query, text, image, state],
outputs=[
processors_output,
competition_output,
supervisor_output,
state,
],
)
return interface_tab
def main():
with gr.Blocks(
css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 600px; overflow: auto;}
#create_container {height: 750px; margin-left: 0px; margin-right: 0px;}
#tokenizer_renderer span {white-space: pre-wrap}
"""
) as demo:
with gr.Row():
introduction()
with gr.Row():
processor_tab()
with gr.Row():
interface_tab()
return demo
def start_demo():
demo = main()
if DEPLOYED:
demo.queue(api_open=False).launch(show_api=False)
else:
demo.queue()
demo.launch(share=False, server_name="0.0.0.0")
if __name__ == "__main__":
start_demo()