Spaces:
Running
Running
#!/usr/bin/env python | |
import gradio as gr | |
import os | |
import re | |
from PIL import Image | |
import base64 | |
import time | |
DESCRIPTION = '''# <a href="https://github.com/THUDM/VisualGLM">VisualGLM</a>''' | |
MAINTENANCE_NOTICE='Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.' | |
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/VisualGLM">https://github.com/THUDM/VisualGLM</a>. It would be recommended to check out the repo if you want to see the detail of our model and training process.' | |
import json | |
import requests | |
import base64 | |
URL = os.environ.get("URL") | |
def process_image(image_prompt): | |
image = Image.open(image_prompt) | |
print(f"height:{image.height}, width:{image.width}") | |
resized_image = image.resize((224, 224), ) | |
timestamp = int(time.time()) | |
file_ext = os.path.splitext(image_prompt)[1] | |
filename = f"examples/{timestamp}{file_ext}" | |
resized_image.save(filename) | |
print(f"temporal filename {filename}") | |
with open(filename, "rb") as image_file: | |
encoded_img = str(base64.b64encode(image_file.read()), encoding='utf-8') | |
os.remove(filename) | |
return encoded_img | |
def is_chinese(text): | |
zh_pattern = re.compile(u'[\u4e00-\u9fa5]+') | |
return zh_pattern.search(text) | |
def post( | |
input_text, | |
temperature, | |
top_p, | |
image_prompt, | |
result_previous | |
): | |
result_text = [(ele[0], ele[1]) for ele in result_previous] | |
for i in range(len(result_text)-1, -1, -1): | |
if result_text[i][0] == "": | |
del result_text[i] | |
print(f"history {result_text}") | |
is_zh = is_chinese(input_text) | |
if image_prompt is None: | |
print("Image empty") | |
if is_zh: | |
result_text.append((input_text, '图片为空!请上传图片并重试。')) | |
else: | |
result_text.append((input_text, 'Image empty! Please upload a image and retry.')) | |
return input_text, result_text | |
elif input_text == "": | |
print("Text empty") | |
result_text.append((input_text, 'Text empty! Please enter text and retry.')) | |
return "", result_text | |
headers = { | |
"Content-Type": "application/json; charset=UTF-8", | |
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36", | |
} | |
if image_prompt: | |
encoded_img = process_image(image_prompt) | |
else: | |
encoded_img = None | |
print('开始请求...') | |
data = json.dumps({ | |
'text': input_text, | |
'image_prompt': encoded_img, | |
'temperature': temperature, | |
'top_p': top_p, | |
'history': result_text | |
}) | |
try: | |
response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100)).json() | |
except Exception as e: | |
print("error message", e) | |
if is_zh: | |
result_text.append((input_text, '超时!请稍等几分钟再重试。')) | |
else: | |
result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.')) | |
return "", result_text | |
print('请求完毕...') | |
answer = str(response['result']) | |
result_text.append((input_text, answer)) | |
print(result_text) | |
print('finished') | |
return "", result_text | |
def clear_fn(value): | |
return "", [("", "Hi, What do you want to know about this image?")], None | |
def clear_fn2(value): | |
return [("", "Hi, What do you want to know about this image?")] | |
def main(): | |
gr.close_all() | |
examples = [] | |
with open("./examples/example_inputs.jsonl") as f: | |
for line in f: | |
data = json.loads(line) | |
examples.append(data) | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.Markdown(MAINTENANCE_NOTICE) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.') | |
with gr.Row(): | |
run_button = gr.Button('Generate') | |
clear_button = gr.Button('Clear') | |
image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None) | |
with gr.Row(): | |
temperature = gr.Slider(maximum=1, value=0.95, minimum=0, label='Temperature') | |
top_p = gr.Slider(maximum=1, value=0.7, minimum=0, label='Top P') | |
result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")]) | |
gr_examples = gr.Examples(examples=[[example["text"], example["image"]] for example in examples], | |
inputs=[input_text, image_prompt], | |
label="Example Inputs (Click to insert an examplet into the input box)", | |
examples_per_page=3) | |
gr.Markdown(NOTES) | |
print(gr.__version__) | |
run_button.click(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text], | |
outputs=[input_text, result_text]) | |
input_text.submit(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text], | |
outputs=[input_text, result_text]) | |
clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt]) | |
image_prompt.change(fn=clear_fn2, inputs=clear_button, outputs=[result_text]) | |
print(gr.__version__) | |
demo.queue(concurrency_count=10) | |
demo.launch() | |
if __name__ == '__main__': | |
main() |