Spaces:
Sleeping
Sleeping
File size: 3,176 Bytes
31f453f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os
os.environ["GROQ_API_KEY"] = "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"
import os
import gradio as gr
import whisper
from gtts import gTTS
import io
from transformers import pipeline
from groq import Groq
# Initialize the Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# Load the Whisper model
whisper_model = whisper.load_model("base") # You can choose other models like "small", "medium", "large"
# Initialize the grammar correction pipeline
corrector = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis")
def process_audio(file_path):
try:
# Load the audio file
audio = whisper.load_audio(file_path)
# Transcribe the audio using Whisper
result = whisper_model.transcribe(audio)
user_text = result["text"]
# Display the user input text
corrected_text = corrector(user_text)[0]['generated_text'].strip()
# Generate a response using Groq
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": corrected_text}],
model="llama3-8b-8192", # Replace with the correct model if necessary
)
# Access the response using dot notation
response_message = chat_completion.choices[0].message.content.strip()
# Convert the response text to speech
tts = gTTS(response_message)
response_audio_io = io.BytesIO()
tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
response_audio_io.seek(0)
# Save audio to a file to ensure it's generated correctly
with open("response.mp3", "wb") as audio_file:
audio_file.write(response_audio_io.getvalue())
# Return the original text, corrected text, and the path to the saved audio file
return user_text, corrected_text, "response.mp3"
except Exception as e:
return f"An error occurred: {e}", None, None
# Create a Gradio interface with a submit button
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"), # Use type="filepath"
outputs=[
gr.Textbox(label="User voice input into text"), # Original user input text
gr.Textbox(label="Corrected version of user input"), # Corrected text
gr.Audio(label="Response Audio") # Response audio
],
live=False, # Ensure live mode is off to use a submit button
title="Audio Processing with Grammar Correction",
description="Upload an audio file, which will be transcribed, corrected for grammar, and then used to generate a response.",
allow_flagging="never"
)
iface.launch()
# except Exception as e:
# return f"An error occurred: {e}", None, None
# iface = gr.Interface(
# fn=process_audio,
# inputs=gr.Audio(type="filepath"), # Use type="filepath"
# outputs=[
# gr.Textbox(label="User voice input into text"), # Original user input text
# gr.Textbox(label="Corrected version of user input"), # Corrected text
# gr.Audio(label="Response Audio") # Response audio
# ],
# live=True
# )
# iface.launch()
|