Aria / app.py
andito's picture
andito HF staff
Update app.py
3d2e344 verified
raw
history blame
8.26 kB
import gradio as gr
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM_converted_4")
model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceTB/SmolVLM_converted_4",
torch_dtype=torch.bfloat16,
#_attn_implementation="flash_attention_2"
).to("cuda")
BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>", "<row_", "apiro", "\u2500lrow_", "row_1"], add_special_tokens=False).input_ids
EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]
@spaces.GPU
def model_inference(
images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
repetition_penalty, top_p
):
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the image(s).")
if isinstance(images, Image.Image):
images = [images]
resulting_messages = [
{
"role": "user",
"content": [{"type": "image"}] + [
{"type": "text", "text": text}
]
}
]
if assistant_prefix:
text = f"{assistant_prefix} {text}"
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
generation_args["bad_words_ids"] = BAD_WORDS_IDS
generation_args.update(inputs)
# Generate
generated_ids = model.generate(**generation_args)
generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
return generated_texts[0]
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("## IDEFICS3-Llama 🐶")
gr.Markdown("Play with [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) in this demo. To get started, upload an image and text or try one of the examples.")
gr.Markdown("**Disclaimer:** Idefics3 does not include an RLHF alignment stage, so it may not consistently follow prompts or handle complex tasks. However, this doesn't mean it is incapable of doing so. Adding a prefix to the assistant's response, such as Let's think step for a reasoning question or `<html>` for HTML code generation, can significantly improve the output in practice. You could also play with the parameters such as the temperature in non-greedy mode.")
with gr.Column():
image_input = gr.Image(label="Upload your Image", type="pil", scale=1)
query_input = gr.Textbox(label="Prompt")
assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")
submit_btn = gr.Button("Submit")
output = gr.Textbox(label="Output")
with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
examples=[
["example_images/mmmu_example.jpeg", "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?", "Let's think step by step.", "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/rococo_1.jpg", "What art era is this?", None, "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/paper_with_text.png", "Read what's written on the paper", None, "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/dragons_playing.png","What's unusual about this image?",None, "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/example_images_ai2d_example_2.jpeg", "What happens to fish if pelicans increase?", None, "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", None, "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/dummy_pdf.png", "How much percent is the order status?", None, "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.",None, "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/s2w_example.png", "What is this UI about?", None,"Greedy", 0.4, 512, 1.2, 0.8]]
# Hyper-parameters for generation
max_new_tokens = gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Greedy",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=repetition_penalty,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.Examples(
examples = examples,
inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
max_new_tokens, repetition_penalty, top_p],
outputs=output,
fn=model_inference
)
submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
max_new_tokens, repetition_penalty, top_p], outputs=output)
demo.launch(debug=True)