A-Roucher
commited on
Commit
·
c9fa165
1
Parent(s):
d3b59ef
fix: change requirements
Browse files- app.py +14 -15
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,19 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import datasets
|
4 |
-
|
5 |
-
|
6 |
-
st.write(x, 'squared is', x * x)
|
7 |
|
8 |
st.sidebar.text_input("Type your quote here")
|
9 |
|
10 |
dataset = datasets.load_dataset('A-Roucher/english_historical_quotes', download_mode="force_redownload")
|
11 |
|
12 |
-
dataset = dataset['train']
|
13 |
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2" # BAAI/bge-small-en-v1.5" # "Cohere/Cohere-embed-english-light-v3.0" # "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
-
|
16 |
encoder = SentenceTransformer(model_name)
|
|
|
17 |
embeddings = encoder.encode(
|
18 |
dataset["quote"],
|
19 |
batch_size=4,
|
@@ -22,8 +21,8 @@ embeddings = encoder.encode(
|
|
22 |
normalize_embeddings=True,
|
23 |
)
|
24 |
|
25 |
-
dataset_embeddings = datasets.Dataset.from_dict({"embeddings": embeddings})
|
26 |
-
dataset_embeddings.add_faiss_index(column="embeddings")
|
27 |
|
28 |
# dataset_embeddings.save_faiss_index('embeddings', 'output/index_alone.faiss')
|
29 |
|
@@ -36,17 +35,17 @@ sentence_embedding = encoder.encode([sentence])
|
|
36 |
# scores, samples = dataset_embeddings.search(
|
37 |
# sentence_embedding, k=10
|
38 |
# )
|
39 |
-
|
|
|
40 |
from sentence_transformers.util import semantic_search
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
hits = semantic_search(sentence_embedding, dataset_embeddings[author_indexes, :], top_k=5)
|
45 |
-
st.write(hits)
|
46 |
-
list_hits = [author_indexes[i['corpus_id']] for i in hits[0]]
|
47 |
-
st.write(dataset_embeddings.select([12676, 4967, 2612, 8884, 4797]))
|
48 |
-
|
49 |
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# sentence_embedding = model.encode([sentence])
|
52 |
# scores, sample_indexes = QUOTES_INDEX.search(
|
|
|
1 |
import streamlit as st
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import datasets
|
4 |
+
import faiss
|
5 |
+
import torch
|
|
|
6 |
|
7 |
st.sidebar.text_input("Type your quote here")
|
8 |
|
9 |
dataset = datasets.load_dataset('A-Roucher/english_historical_quotes', download_mode="force_redownload")
|
10 |
|
11 |
+
dataset = datasets.Dataset.from_dict(dataset['train'][:100])
|
12 |
|
13 |
model_name = "sentence-transformers/all-MiniLM-L6-v2" # BAAI/bge-small-en-v1.5" # "Cohere/Cohere-embed-english-light-v3.0" # "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
14 |
encoder = SentenceTransformer(model_name)
|
15 |
+
|
16 |
embeddings = encoder.encode(
|
17 |
dataset["quote"],
|
18 |
batch_size=4,
|
|
|
21 |
normalize_embeddings=True,
|
22 |
)
|
23 |
|
24 |
+
# dataset_embeddings = datasets.Dataset.from_dict({"embeddings": embeddings})
|
25 |
+
# dataset_embeddings.add_faiss_index(column="embeddings")
|
26 |
|
27 |
# dataset_embeddings.save_faiss_index('embeddings', 'output/index_alone.faiss')
|
28 |
|
|
|
35 |
# scores, samples = dataset_embeddings.search(
|
36 |
# sentence_embedding, k=10
|
37 |
# )
|
38 |
+
sentence_embedding_tensor = torch.Tensor(sentence_embedding)
|
39 |
+
dataset_embeddings_tensor = torch.Tensor(embeddings)
|
40 |
from sentence_transformers.util import semantic_search
|
41 |
|
42 |
+
author_indexes = list(range(10))
|
43 |
+
hits = semantic_search(sentence_embedding_tensor, dataset_embeddings_tensor[author_indexes, :], top_k=5)
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
list_hits = [author_indexes[i['corpus_id']] for i in hits[0]]
|
46 |
+
print(list_hits)
|
47 |
+
print(dataset)
|
48 |
+
st.write(dataset.select(list_hits))
|
49 |
|
50 |
# sentence_embedding = model.encode([sentence])
|
51 |
# scores, sample_indexes = QUOTES_INDEX.search(
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
datasets==2.
|
|
|
2 |
sentence_transformers==2.2.2
|
3 |
streamlit==1.28.1
|
|
|
1 |
+
datasets==2.14.6
|
2 |
+
faiss-cpu==1.7.3
|
3 |
sentence_transformers==2.2.2
|
4 |
streamlit==1.28.1
|