Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,291 Bytes
2d63e52 46edcf6 2d63e52 ad36776 2eb8692 ad36776 5da9cef ad36776 9a4471c ad36776 a7a4e14 da19af6 a7a4e14 ad36776 da19af6 ad36776 a7a4e14 ad36776 bc46ee1 a6cebf8 ad36776 bc46ee1 bdb89ed ad36776 33585a0 ad36776 a7a4e14 ad36776 a7a4e14 ad36776 a7a4e14 ad36776 a7a4e14 ad36776 66e4ecd 2eb8692 a7a4e14 ad36776 66e4ecd ad36776 a7a4e14 ad36776 bc46ee1 ad36776 66e4ecd ad36776 bc46ee1 ad36776 a7a4e14 ad36776 bc46ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
STYLE = """
.container {
width: 100%;
display: grid;
align-items: center;
margin: 0!important;
}
.prose ul ul {
margin: 0!important;
}
.tree {
padding: 0px;
margin: 0!important;
box-sizing: border-box;
font-size: 16px;
width: 100%;
height: auto;
text-align: center;
}
.tree ul {
padding-top: 20px;
position: relative;
transition: .5s;
margin: 0!important;
}
.tree li {
display: inline-table;
text-align: center;
list-style-type: none;
position: relative;
padding: 10px;
transition: .5s;
}
.tree li::before, .tree li::after {
content: '';
position: absolute;
top: 0;
right: 50%;
border-top: 1px solid #ccc;
width: 51%;
height: 10px;
}
.tree li::after {
right: auto;
left: 50%;
border-left: 1px solid #ccc;
}
.tree li:only-child::after, .tree li:only-child::before {
display: none;
}
.tree li:only-child {
padding-top: 0;
}
.tree li:first-child::before, .tree li:last-child::after {
border: 0 none;
}
.tree li:last-child::before {
border-right: 1px solid #ccc;
border-radius: 0 5px 0 0;
-webkit-border-radius: 0 5px 0 0;
-moz-border-radius: 0 5px 0 0;
}
.tree li:first-child::after {
border-radius: 5px 0 0 0;
-webkit-border-radius: 5px 0 0 0;
-moz-border-radius: 5px 0 0 0;
}
.tree ul ul::before {
content: '';
position: absolute;
top: 0;
left: 50%;
border-left: 1px solid #ccc;
width: 0;
height: 20px;
}
.tree li a {
border: 1px solid #ccc;
padding: 10px;
display: inline-grid;
border-radius: 5px;
text-decoration-line: none;
border-radius: 5px;
transition: .5s;
}
.tree li a span {
border: 1px solid #ccc;
border-radius: 5px;
color: #666;
padding: 8px;
font-size: 12px;
text-transform: uppercase;
letter-spacing: 1px;
font-weight: 500;
}
/*Hover-Section*/
.tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a {
background: #c8e4f8;
color: #000;
border: 1px solid #94a0b4;
}
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
border-color: #94a0b4;
}
"""
from transformers import GPT2Tokenizer, AutoModelForCausalLM, AutoTokenizer
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("Locutusque/TinyMistral-248M-v2")
model = AutoModelForCausalLM.from_pretrained("Locutusque/TinyMistral-248M-v2")
tokenizer.pad_token_id = tokenizer.eos_token_id
print("Loading finished.")
def generate_html(token, node):
"""Recursively generate HTML for the tree."""
html_content = f" <li> <a href='#'> <span> <b>{token}</b> </span> "
html_content += node["table"] if node["table"] is not None else ""
html_content += "</a>"
if len(node["children"].keys()) > 0:
html_content += "<ul> "
for token, subnode in node["children"].items():
html_content += generate_html(token, subnode)
html_content += "</ul>"
html_content += "</li>"
return html_content
def generate_markdown_table(scores, top_k=4, chosen_tokens=None):
markdown_table = """
<table>
<tr>
<th><b>Token</b></th>
<th><b>Probability</b></th>
</tr>"""
for token_idx in np.argsort(scores)[-top_k:]:
token = tokenizer.decode([token_idx])
style = ""
if chosen_tokens and token in chosen_tokens:
style = "background-color:red"
markdown_table += f"""
<tr style={style}>
<td>{token}</td>
<td>{scores[token_idx]}</td>
</tr>"""
markdown_table += """
</table>"""
return markdown_table
def display_tree(start_sentence, scores, sequences, beam_indices):
display = """<div class="container">
<div class="tree">
<ul>"""
sequences = sequences.cpu().numpy()
print(tokenizer.batch_decode(sequences))
original_tree = {"table": None, "children": {}}
for sequence_ix in range(len(sequences)):
current_tree = original_tree
for step, step_scores in enumerate(scores):
current_token_choice = tokenizer.decode([sequences[sequence_ix, step]])
current_beam = beam_indices[sequence_ix, step]
if current_token_choice not in current_tree["children"]:
current_tree["children"][current_token_choice] = {
"table": None,
"children": {},
}
# Rewrite the probs table even if it was there before, since new chosen nodes have appeared in the children of current tree
markdown_table = generate_markdown_table(
step_scores[current_beam, :],
chosen_tokens=current_tree["children"].keys(),
)
current_tree["table"] = markdown_table
current_tree = current_tree["children"][current_token_choice]
display += generate_html(start_sentence, original_tree)
display += """
</ul>
</div>
</body>
"""
return display
def get_tables(input_text, number_steps, number_beams):
inputs = tokenizer([input_text], return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
num_beams=number_beams,
num_return_sequences=number_beams,
return_dict_in_generate=True,
output_scores=True,
top_k=5,
temperature=1.0,
do_sample=True,
)
tables = display_tree(
input_text,
outputs.scores,
outputs.sequences[:, len(inputs) :],
outputs.beam_indices[:, : -len(inputs)],
)
return tables
import gradio as gr
with gr.Blocks(
theme=gr.themes.Soft(
text_size="lg", font=["monospace"], primary_hue=gr.themes.colors.green
),
css=STYLE,
) as demo:
text = gr.Textbox(label="Sentence to decode from🪶", value="Today is")
steps = gr.Slider(label="Number of steps", minimum=1, maximum=10, step=1, value=4)
beams = gr.Slider(label="Number of beams", minimum=1, maximum=3, step=1, value=3)
button = gr.Button()
out = gr.Markdown(label="Output")
button.click(get_tables, inputs=[text, steps, beams], outputs=out)
demo.launch() |