File size: 8,414 Bytes
e7cb6de
2c8408f
 
 
 
6334a1e
e7cb6de
8d72163
 
eb84d7e
40a40cb
 
74c0a8b
9501bef
 
 
eb84d7e
 
9501bef
 
 
 
eb84d7e
40a40cb
b8e290e
51c0840
 
40a40cb
51c0840
b8e290e
40a40cb
9501bef
a3cc9a8
eb84d7e
40a40cb
 
32d98e4
40a40cb
 
 
 
 
 
 
 
 
 
 
 
 
 
eb84d7e
40a40cb
 
32d98e4
ad6564a
40a40cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb88228
e305056
2c8408f
bb88228
 
5622e1c
3265b22
bb88228
3265b22
9b2e5ac
bb88228
 
3265b22
2c8408f
3265b22
5622e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3265b22
2c8408f
5622e1c
 
 
 
 
 
 
 
 
2c8408f
bb88228
2c8408f
 
51c0840
bb88228
5933b14
e304b98
 
eb84d7e
 
e304b98
eb84d7e
a8ce2d7
e304b98
 
1115dfa
e304b98
a8ce2d7
384ad14
51c0840
e304b98
6a12a73
 
 
 
02271b4
6a12a73
02271b4
 
6a12a73
 
 
8d72163
6a12a73
bb88228
 
37c61d6
bb88228
 
2c8408f
 
40a40cb
2c8408f
 
af9e1dd
 
40a40cb
af9e1dd
 
2c8408f
731bcbf
40a40cb
b7b6ca1
2c8408f
 
 
40a40cb
2c8408f
 
93f7595
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
from langchain.text_splitter import (
    CharacterTextSplitter,
    RecursiveCharacterTextSplitter,
)
from transformers import AutoTokenizer

LABEL_TEXTSPLITTER = "🦜🔗 LangChain's CharacterTextSplitter"
LABEL_RECURSIVE = "🦜🔗 LangChain's RecursiveCharacterTextSplitter"

bert_tokenizer = AutoTokenizer.from_pretrained('google-bert/bert-base-uncased')

def extract_separators_from_string(separators_str):
    try:
        separators = separators_str[1:-1].split(", ")
        return [separator.replace('"', "").replace("'", "") for separator in separators]
    except Exception as e:
        print(e)
        raise gr.Error(f"""
        Did not succeed in extracting seperators from string: {separator_str}.
        Please type it in the correct format: "['separator_1', 'separator_2', etc]"
        """)

def change_split_selection(text, slider_count, split_selection, separator_selection, length_unit_selection):
    print("Updating separator selection interactivity:")
    return (
        gr.Textbox.update(visible=(split_selection==LABEL_RECURSIVE)),
        chunk(text, slider_count, split_selection, separator_selection, length_unit_selection)
    )

def chunk(text, length, splitter_selection, separators_str, length_unit_selection):
    separators = extract_separators_from_string(separators_str)
    print(splitter_selection, length_unit_selection.lower())
    if splitter_selection == LABEL_TEXTSPLITTER:
        if "token" in length_unit_selection.lower():
            text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
                bert_tokenizer,
                separator="",
                chunk_size=length,
                chunk_overlap=0,
                length_function=len,
                is_separator_regex=False,
            )
        else:
            text_splitter = CharacterTextSplitter(
                separator="",
                chunk_size=length,
                chunk_overlap=0,
                length_function=len,
                is_separator_regex=False,
            )
    elif splitter_selection == LABEL_RECURSIVE:
        if "token" in length_unit_selection.lower():
            text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
                bert_tokenizer,
                chunk_size=length,
                chunk_overlap=0,
                add_start_index=True,
                strip_whitespace=False,
                separators=separators,
            )
        else:
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=length,
                chunk_overlap=0,
                length_function=len,
                add_start_index=True,
                strip_whitespace=False,
                separators=separators,
            )
    splits = text_splitter.create_documents([text])
    text_splits = [split.page_content for split in splits]

    output = [(split, str(i)) for i, split in enumerate(text_splits)]
    return output


ESSAY = """### Chapter 6

WHAT SORT OF DESPOTISM DEMOCRATIC NATIONS HAVE TO FEAR

I had remarked during my stay in the United States that a democratic state of society, similar to that of the Americans, might offer singular facilities for the establishment of despotism; and I perceived, upon my return to Europe, how much use had already been made, by most of our rulers, of the notions, the sentiments, and the wants created by this same social condition, for the purpose of extending the circle of their power. This led me to think that the nations of Christendom would perhaps eventually undergo some oppression like that which hung over several of the nations of the ancient world.
A more accurate examination of the subject, and five years of further meditation, have not diminished my fears, but have changed their object.
No sovereign ever lived in former ages so absolute or so powerful as to undertake to administer by his own agency, and without the assistance of intermediate powers, all the parts of a great empire; none ever attempted to subject all his subjects indiscriminately to strict uniformity of regulation and personally to tutor and direct every member of the community. The notion of such an undertaking never occurred to the human mind; and if any man had conceived it, the want of information, the imperfection of the administrative system, and, above all, the natural obstacles caused by the inequality of conditions would speedily have checked the execution of so vast a design.

---


### Challenges of agent systems

Generally, the difficult parts of running an agent system for the LLM engine are:

1. From supplied tools, choose the one that will help advance to a desired goal: e.g. when asked `"What is the smallest prime number greater than 30,000?"`, the agent could call the `Search` tool with `"What is he height of K2"` but it won't help.
2. Call tools with a rigorous argument formatting: for instance when trying to calculate the speed of a car that went 3 km in 10 minutes, you have to call tool `Calculator` to divide `distance` by `time` : even if your Calculator tool accepts calls in the JSON format: `{”tool”: “Calculator”, “args”: “3km/10min”}` , there are many pitfalls, for instance:
    - Misspelling the tool name: `“calculator”` or `“Compute”` wouldn’t work
    - Giving the name of the arguments instead of their values: `“args”: “distance/time”`
    - Non-standardized formatting: `“args": "3km in 10minutes”`
3. Efficiently ingesting and using the information gathered in the past observations, be it the initial context or the observations returned after using tool uses.


So, how would a complete Agent setup look like?

## Running agents with LangChain

We have just integrated a `ChatHuggingFace` wrapper that lets you create agents based on open-source models in [🦜🔗LangChain](https://www.langchain.com/).

The code to create the ChatModel and give it tools is really simple, you can check it all in the [Langchain doc](https://python.langchain.com/docs/integrations/chat/huggingface). 

```python
from langchain_community.llms import HuggingFaceHub
from langchain_community.chat_models.huggingface import ChatHuggingFace

llm = HuggingFaceHub(
    repo_id="HuggingFaceH4/zephyr-7b-beta",
    task="text-generation",
)

chat_model = ChatHuggingFace(llm=llm)
```
"""


with gr.Blocks(theme=gr.themes.Soft(), css="#textbox_id {color: red; font-samily:monospace}") as demo:
    text = gr.Textbox(label="Your text 🪶", value=ESSAY)
    with gr.Row():
        split_selection = gr.Dropdown(
            choices=[
                LABEL_TEXTSPLITTER,
                LABEL_RECURSIVE,
            ],
            value=LABEL_TEXTSPLITTER,
            label="Method to split chunks ✂️",
        )
        separator_selection = gr.Textbox(
            elem_id="textbox_id",
            value=["\n\n", "\n", ".", " ", ""],
            info="Separators used in RecursiveCharacterTextSplitter",
            show_label=False, # or set label to an empty string if you want to keep its space
            visible=False,
        )
    with gr.Row():
        length_unit_selection = gr.Dropdown(
            choices=[
                "Character count",
                "Token count (BERT tokens)",
            ],
            value="Character count",
            label="Length function",
            info="How should we count our chunk lengths?",
        )
        slider_count = gr.Slider(
            20, 500, value=50, label="Length 📏", info="Chunk length, in the chosen unit."
        )
    out = gr.HighlightedText(
        label="Output",
        show_legend=True,
        show_label=False,
    )
    text.change(
        fn=chunk,
        inputs=[text, slider_count, split_selection, separator_selection, length_unit_selection],
        outputs=out,
    )
    length_unit_selection.change(
        fn=chunk,
        inputs=[text, slider_count, split_selection, separator_selection, length_unit_selection],
        outputs=out,
    )
    split_selection.change(
        fn=change_split_selection,
        inputs=[text, slider_count, split_selection, separator_selection, length_unit_selection],
        outputs=[separator_selection, out],
    )
    slider_count.change(
        fn=chunk,
        inputs=[text, slider_count, split_selection, separator_selection, length_unit_selection],
        outputs=out,
    )
demo.launch()