Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Select date
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ from utils import (
|
|
29 |
|
30 |
def restart_space():
|
31 |
HfApi(token=os.getenv("HF_TOKEN", None)).restart_space(
|
32 |
-
repo_id="
|
33 |
)
|
34 |
print(f"Space restarted on {datetime.now()}")
|
35 |
|
@@ -181,9 +181,13 @@ org_info = {
|
|
181 |
"Zhipu AI": ("#FFC300", "π¨π³"),
|
182 |
}
|
183 |
|
184 |
-
def make_figure(
|
185 |
fig = go.Figure()
|
186 |
|
|
|
|
|
|
|
|
|
187 |
for i, org in enumerate(
|
188 |
df.groupby("Organization")["rating"]
|
189 |
.max()
|
@@ -276,13 +280,15 @@ def make_figure(df):
|
|
276 |
legend_title="Ranking as of November 2024",
|
277 |
title="The race for the best LLM",
|
278 |
)
|
|
|
|
|
279 |
fig.update_layout(
|
280 |
xaxis_title="Date",
|
281 |
hovermode="closest",
|
282 |
-
xaxis_range=[
|
283 |
-
yaxis_range=[
|
284 |
)
|
285 |
-
apply_template(fig, annotation_text="Aymeric Roucher")
|
286 |
|
287 |
fig.update_xaxes(
|
288 |
tickformat="%m-%Y",
|
@@ -290,8 +296,8 @@ def make_figure(df):
|
|
290 |
return fig, df
|
291 |
|
292 |
def filter_df(top_n_orgs=11, minimum_rating=1000):
|
293 |
-
top_orgs = ratings_df.groupby("Organization")["rating"].max().nlargest(top_n_orgs).index.tolist()
|
294 |
-
return ratings_df.loc[(ratings_df["Organization"].isin(top_orgs))
|
295 |
|
296 |
with gr.Blocks(
|
297 |
theme=gr.themes.Soft(
|
@@ -310,8 +316,9 @@ with gr.Blocks(
|
|
310 |
|
311 |
filtered_df = gr.State()
|
312 |
with gr.Row():
|
313 |
-
top_n_orgs = gr.Slider(minimum=1, maximum=30, value=10, label="View top N companies")
|
314 |
-
minimum_rating = gr.Slider(minimum=800, maximum=1300, value=1000, label="Restrict to ELO scores above N")
|
|
|
315 |
with gr.Group():
|
316 |
with gr.Tab("Plot"):
|
317 |
plot = gr.Plot(show_label=False)
|
@@ -333,31 +340,27 @@ with gr.Blocks(
|
|
333 |
|
334 |
demo.load(
|
335 |
fn=filter_df,
|
336 |
-
inputs=[top_n_orgs
|
337 |
outputs=filtered_df,
|
338 |
).then(
|
339 |
fn=make_figure,
|
340 |
-
inputs=[filtered_df],
|
341 |
outputs=[plot, display_df],
|
342 |
)
|
343 |
|
344 |
-
minimum_rating.change(
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
).then(
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
)
|
353 |
-
|
354 |
-
|
355 |
-
fn=filter_df,
|
356 |
-
inputs=[top_n_orgs, minimum_rating],
|
357 |
-
outputs=filtered_df,
|
358 |
-
).then(
|
359 |
fn=make_figure,
|
360 |
-
inputs=[filtered_df],
|
361 |
outputs=[plot, display_df],
|
362 |
)
|
363 |
|
|
|
29 |
|
30 |
def restart_space():
|
31 |
HfApi(token=os.getenv("HF_TOKEN", None)).restart_space(
|
32 |
+
repo_id="m-ric/llm-race-to-the-top"
|
33 |
)
|
34 |
print(f"Space restarted on {datetime.now()}")
|
35 |
|
|
|
181 |
"Zhipu AI": ("#FFC300", "π¨π³"),
|
182 |
}
|
183 |
|
184 |
+
def make_figure(original_df, start_time_gradio):
|
185 |
fig = go.Figure()
|
186 |
|
187 |
+
start_date = pd.to_datetime(start_time_gradio, unit='s')
|
188 |
+
original_df["Release Date"] = pd.to_datetime(original_df["Release Date"])
|
189 |
+
df = original_df.copy()
|
190 |
+
|
191 |
for i, org in enumerate(
|
192 |
df.groupby("Organization")["rating"]
|
193 |
.max()
|
|
|
280 |
legend_title="Ranking as of November 2024",
|
281 |
title="The race for the best LLM",
|
282 |
)
|
283 |
+
print("START TIME:", start_time)
|
284 |
+
margin = 30
|
285 |
fig.update_layout(
|
286 |
xaxis_title="Date",
|
287 |
hovermode="closest",
|
288 |
+
xaxis_range=[start_date, current_date], # Extend x-axis for labels
|
289 |
+
yaxis_range=[df.loc[df["Release Date"] >= start_date]["rating"].min() - margin, df["rating"].max() + margin],
|
290 |
)
|
291 |
+
apply_template(fig, annotation_text="Aymeric Roucher", height=500)
|
292 |
|
293 |
fig.update_xaxes(
|
294 |
tickformat="%m-%Y",
|
|
|
296 |
return fig, df
|
297 |
|
298 |
def filter_df(top_n_orgs=11, minimum_rating=1000):
|
299 |
+
top_orgs = ratings_df.groupby("Organization")["rating"].max().nlargest(int(top_n_orgs)).index.tolist()
|
300 |
+
return ratings_df.loc[(ratings_df["Organization"].isin(top_orgs))]
|
301 |
|
302 |
with gr.Blocks(
|
303 |
theme=gr.themes.Soft(
|
|
|
316 |
|
317 |
filtered_df = gr.State()
|
318 |
with gr.Row():
|
319 |
+
top_n_orgs = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="View top N companies")
|
320 |
+
# minimum_rating = gr.Slider(minimum=800, maximum=1300, value=1000, step=1, label="Restrict to ELO scores above N")
|
321 |
+
start_time = gr.DateTime(value="2024-01-01 00:00:00")
|
322 |
with gr.Group():
|
323 |
with gr.Tab("Plot"):
|
324 |
plot = gr.Plot(show_label=False)
|
|
|
340 |
|
341 |
demo.load(
|
342 |
fn=filter_df,
|
343 |
+
inputs=[top_n_orgs],
|
344 |
outputs=filtered_df,
|
345 |
).then(
|
346 |
fn=make_figure,
|
347 |
+
inputs=[filtered_df, start_time],
|
348 |
outputs=[plot, display_df],
|
349 |
)
|
350 |
|
351 |
+
# minimum_rating.change(
|
352 |
+
# fn=filter_df,
|
353 |
+
# inputs=[top_n_orgs, minimum_rating],
|
354 |
+
# outputs=filtered_df,
|
355 |
+
# ).then(
|
356 |
+
# fn=make_figure,
|
357 |
+
# inputs=[filtered_df],
|
358 |
+
# outputs=[plot, display_df],
|
359 |
+
# )
|
360 |
+
|
361 |
+
start_time.change(
|
|
|
|
|
|
|
|
|
362 |
fn=make_figure,
|
363 |
+
inputs=[filtered_df, start_time],
|
364 |
outputs=[plot, display_df],
|
365 |
)
|
366 |
|