m-ric HF staff commited on
Commit
f9a17d1
·
1 Parent(s): 7306a42

Better app, thx Claude

Browse files
Files changed (2) hide show
  1. app.py +90 -25
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,40 +1,105 @@
1
  import gradio as gr
2
  import pandas as pd
 
 
 
3
 
4
- model_data = pd.read_json("model_prices.json")
5
 
6
- def compute_all(prompt_string, completion_string, model):
7
- prompt_cost = calculate_prompt_cost(prompt_string, model)
8
- completion_cost = calculate_completion_cost(completion_string, model)
9
-
10
- prompt_tokens = count_string_tokens(prompt_string, model)
11
- completion_tokens = count_string_tokens(completion_string, model)
 
 
 
 
 
12
 
13
- return prompt_tokens, prompt_cost, completion_tokens, completion_cost
 
14
 
 
 
 
 
 
 
 
 
15
 
16
- with gr.Blocks(theme='soft') as demo:
17
- gr.Markdown("""### Text-to-$: calculate the price of your LLM runs
18
- Based on data from the great [tokencost](https://github.com/AgentOps-AI/tokencost/blob/main/tokencost/model_prices.json).
19
- """)
20
- with gr.Row():
21
- with gr.Column():
22
- prompt = gr.Textbox(value="Lorem ipsum dolor sit amet...")
23
- completion = gr.Textbox(value="...")
24
 
25
- model = gr.Dropdown(value="gpt-3.5-turbo", choices=["gpt-3.5-turbo", "gpt-3.5-turbo"])
 
 
 
 
 
 
26
 
27
- button = gr.Button("Compute costs!")
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- with gr.Column():
30
- with gr.Row():
31
- prompt_tokens = gr.Textbox(interactive=False)
32
- prompt_cost = gr.Textbox(interactive=False)
 
 
 
 
 
 
 
33
  with gr.Row():
34
- completion_tokens = gr.Textbox(interactive=False)
35
- completion_cost = gr.Textbox(interactive=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- button.click(compute_all, inputs=[prompt, completion, model], outputs=[prompt_tokens, prompt_cost, completion_tokens, completion_cost])
 
 
 
 
 
38
 
39
  if __name__ == "__main__":
40
  demo.launch()
 
1
  import gradio as gr
2
  import pandas as pd
3
+ import requests
4
+ import json
5
+ import tiktoken
6
 
7
+ PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
8
 
9
+ # Ensure TOKEN_COSTS is up to date when the module is loaded
10
+ try:
11
+ response = requests.get(PRICES_URL)
12
+ if response.status_code == 200:
13
+ TOKEN_COSTS = response.json()
14
+ else:
15
+ raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
16
+ except Exception as e:
17
+ print(f'Failed to update token costs with error: {e}. Using static costs.')
18
+ with open("model_prices.json", "r") as f:
19
+ TOKEN_COSTS = json.load(f)
20
 
21
+ TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
22
+ TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
23
 
24
+ def count_string_tokens(string: str, model: str) -> int:
25
+ """Returns the number of tokens in a text string."""
26
+ try:
27
+ encoding = tiktoken.encoding_for_model(model.split('/')[-1])
28
+ except KeyError:
29
+ print(f"Model {model} not found. Using cl100k_base encoding.")
30
+ encoding = tiktoken.get_encoding("cl100k_base")
31
+ return len(encoding.encode(string))
32
 
33
+ def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
34
+ """Calculate the total cost for a given model and number of tokens."""
35
+ model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
36
+ prompt_cost = prompt_tokens * model_data['input_cost_per_token']
37
+ completion_cost = completion_tokens * model_data['output_cost_per_token']
38
+ return prompt_cost + completion_cost
 
 
39
 
40
+ def update_model_list(function_calling, litellm_provider, max_price):
41
+ filtered_models = TOKEN_COSTS[
42
+ (TOKEN_COSTS['supports_function_calling'] == function_calling) &
43
+ (TOKEN_COSTS['litellm_provider'] == litellm_provider) &
44
+ (TOKEN_COSTS['input_cost_per_token'] + TOKEN_COSTS['output_cost_per_token'] <= max_price)
45
+ ]
46
+ return filtered_models['model'].tolist()
47
 
48
+ def compute_all(prompt_string, completion_string, model):
49
+ prompt_tokens = count_string_tokens(prompt_string, model)
50
+ completion_tokens = count_string_tokens(completion_string, model)
51
+ cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
52
+ prompt_cost = prompt_tokens * TOKEN_COSTS[TOKEN_COSTS['model'] == model]['input_cost_per_token'].values[0]
53
+ completion_cost = completion_tokens * TOKEN_COSTS[TOKEN_COSTS['model'] == model]['output_cost_per_token'].values[0]
54
+
55
+ return (
56
+ f"{prompt_tokens} tokens",
57
+ f"${prompt_cost:.6f}",
58
+ f"{completion_tokens} tokens",
59
+ f"${completion_cost:.6f}",
60
+ f"${cost:.6f}"
61
+ )
62
 
63
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
64
+ gr.Markdown("""
65
+ # Text-to-$$$: Calculate the price of your LLM runs
66
+ Based on data from [litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
67
+ """)
68
+
69
+ with gr.Row():
70
+ with gr.Column(scale=2):
71
+ prompt = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3)
72
+ completion = gr.Textbox(label="Completion", value="Here's a joke about AI: Why did the AI go to therapy? It had too many deep issues!", lines=3)
73
+
74
  with gr.Row():
75
+ function_calling = gr.Checkbox(label="Supports Function Calling")
76
+ litellm_provider = gr.Dropdown(label="LiteLLM Provider", choices=TOKEN_COSTS['litellm_provider'].unique().tolist())
77
+
78
+ max_price = gr.Slider(label="Max Price per Token (input + output)", minimum=0, maximum=0.001, step=0.00001, value=0.001)
79
+
80
+ model = gr.Dropdown(label="Model", choices=TOKEN_COSTS['model'].tolist())
81
+
82
+ compute_button = gr.Button("Compute Costs", variant="primary")
83
+
84
+ with gr.Column(scale=1):
85
+ with gr.Group():
86
+ prompt_tokens = gr.Textbox(label="Prompt Tokens", interactive=False)
87
+ prompt_cost = gr.Textbox(label="Prompt Cost", interactive=False)
88
+ completion_tokens = gr.Textbox(label="Completion Tokens", interactive=False)
89
+ completion_cost = gr.Textbox(label="Completion Cost", interactive=False)
90
+ total_cost = gr.Textbox(label="Total Cost", interactive=False)
91
+
92
+ # Update model list based on criteria
93
+ function_calling.change(update_model_list, inputs=[function_calling, litellm_provider, max_price], outputs=model)
94
+ litellm_provider.change(update_model_list, inputs=[function_calling, litellm_provider, max_price], outputs=model)
95
+ max_price.change(update_model_list, inputs=[function_calling, litellm_provider, max_price], outputs=model)
96
 
97
+ # Compute costs
98
+ compute_button.click(
99
+ compute_all,
100
+ inputs=[prompt, completion, model],
101
+ outputs=[prompt_tokens, prompt_cost, completion_tokens, completion_cost, total_cost]
102
+ )
103
 
104
  if __name__ == "__main__":
105
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- pandas
 
 
1
+ pandas
2
+ tiktoken