updadted mistral token counter
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import os
|
|
3 |
import tiktoken
|
4 |
import streamlit as st
|
5 |
|
6 |
-
# from llama_index.llms.gemini import Gemini
|
7 |
from llama_index.core import (
|
8 |
VectorStoreIndex,
|
9 |
Settings,
|
@@ -14,10 +13,33 @@ from streamlit_pdf_viewer import pdf_viewer
|
|
14 |
|
15 |
MAX_OUTPUT_TOKENS = 2048
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"""
|
20 |
-
|
21 |
|
22 |
See: https://medium.com/google-cloud/counting-gemini-text-tokens-locally-with-the-vertex-ai-sdk-78979fea6244
|
23 |
"""
|
@@ -99,7 +121,6 @@ def main():
|
|
99 |
# https://docs.llamaindex.ai/en/stable/module_guides/models/llms/
|
100 |
if llm_key is not None:
|
101 |
if provider == 'google':
|
102 |
-
# raise NotImplementedError(f"{provider} is not supported yet")
|
103 |
from llama_index.llms.gemini import Gemini
|
104 |
from llama_index.embeddings.gemini import GeminiEmbedding
|
105 |
|
@@ -110,7 +131,7 @@ def main():
|
|
110 |
temperature=temperature,
|
111 |
max_tokens=MAX_OUTPUT_TOKENS
|
112 |
)
|
113 |
-
Settings.tokenizer =
|
114 |
Settings.num_output = MAX_OUTPUT_TOKENS
|
115 |
Settings.embed_model = GeminiEmbedding(
|
116 |
model_name="models/text-embedding-004", api_key=os.environ.get("GOOGLE_API_KEY") #, title="this is a document"
|
@@ -141,7 +162,7 @@ def main():
|
|
141 |
elif provider == 'mistralai':
|
142 |
from llama_index.llms.mistralai import MistralAI
|
143 |
from llama_index.embeddings.mistralai import MistralAIEmbedding
|
144 |
-
|
145 |
os.environ['MISTRAL_API_KEY'] = str(llm_key)
|
146 |
Settings.llm = MistralAI(
|
147 |
model=llm_name,
|
@@ -150,7 +171,7 @@ def main():
|
|
150 |
random_seed=42,
|
151 |
safe_mode=True
|
152 |
)
|
153 |
-
|
154 |
Settings.num_output = MAX_OUTPUT_TOKENS
|
155 |
Settings.embed_model = MistralAIEmbedding(
|
156 |
model_name="mistral-embed",
|
|
|
3 |
import tiktoken
|
4 |
import streamlit as st
|
5 |
|
|
|
6 |
from llama_index.core import (
|
7 |
VectorStoreIndex,
|
8 |
Settings,
|
|
|
13 |
|
14 |
MAX_OUTPUT_TOKENS = 2048
|
15 |
|
16 |
+
class MistralTokens:
|
17 |
+
"""
|
18 |
+
Returns tokens for MistralAI models.
|
19 |
+
|
20 |
+
See: https://docs.mistral.ai/guides/tokenization/
|
21 |
+
"""
|
22 |
+
def __init__(self, llm_name):
|
23 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
24 |
+
self.tokenizer = MistralTokenizer.from_model(llm_name)
|
25 |
|
26 |
+
def __call__(self, input):
|
27 |
+
"""This returns all the tokens indices in a list since LlamaIndex seems to count by calling `len()` on the tokenizer function."""
|
28 |
+
from mistral_common.protocol.instruct.messages import UserMessage
|
29 |
+
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
30 |
+
|
31 |
+
return self.tokenizer.encode_chat_completion(
|
32 |
+
ChatCompletionRequest(
|
33 |
+
tools=[],
|
34 |
+
messages=[
|
35 |
+
UserMessage(content=input)
|
36 |
+
]
|
37 |
+
)
|
38 |
+
).tokens
|
39 |
+
|
40 |
+
class GeminiTokens:
|
41 |
"""
|
42 |
+
Returns tokens for Gemini models.
|
43 |
|
44 |
See: https://medium.com/google-cloud/counting-gemini-text-tokens-locally-with-the-vertex-ai-sdk-78979fea6244
|
45 |
"""
|
|
|
121 |
# https://docs.llamaindex.ai/en/stable/module_guides/models/llms/
|
122 |
if llm_key is not None:
|
123 |
if provider == 'google':
|
|
|
124 |
from llama_index.llms.gemini import Gemini
|
125 |
from llama_index.embeddings.gemini import GeminiEmbedding
|
126 |
|
|
|
131 |
temperature=temperature,
|
132 |
max_tokens=MAX_OUTPUT_TOKENS
|
133 |
)
|
134 |
+
Settings.tokenizer = GeminiTokens(llm_name)
|
135 |
Settings.num_output = MAX_OUTPUT_TOKENS
|
136 |
Settings.embed_model = GeminiEmbedding(
|
137 |
model_name="models/text-embedding-004", api_key=os.environ.get("GOOGLE_API_KEY") #, title="this is a document"
|
|
|
162 |
elif provider == 'mistralai':
|
163 |
from llama_index.llms.mistralai import MistralAI
|
164 |
from llama_index.embeddings.mistralai import MistralAIEmbedding
|
165 |
+
|
166 |
os.environ['MISTRAL_API_KEY'] = str(llm_key)
|
167 |
Settings.llm = MistralAI(
|
168 |
model=llm_name,
|
|
|
171 |
random_seed=42,
|
172 |
safe_mode=True
|
173 |
)
|
174 |
+
Settings.tokenizer = MistralTokens(llm_name)
|
175 |
Settings.num_output = MAX_OUTPUT_TOKENS
|
176 |
Settings.embed_model = MistralAIEmbedding(
|
177 |
model_name="mistral-embed",
|