VideoDetection / icpr2020dfdc /train_binclass.py
Mohamed Almukhtar
Duplicate from malmukhtar/ImageDetection
fc3814c
raw
history blame
19.2 kB
"""
Video Face Manipulation Detection Through Ensemble of CNNs
Image and Sound Processing Lab - Politecnico di Milano
Nicolò Bonettini
Edoardo Daniele Cannas
Sara Mandelli
Luca Bondi
Paolo Bestagini
"""
import argparse
import os
import shutil
import warnings
import albumentations as A
import numpy as np
import pandas as pd
import torch
import torch.multiprocessing
from torchvision.transforms import ToPILImage, ToTensor
from isplutils import utils, split
torch.multiprocessing.set_sharing_strategy('file_system')
import torch.nn as nn
from albumentations.pytorch import ToTensorV2
from sklearn.metrics import roc_auc_score
from tensorboardX import SummaryWriter
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from PIL import ImageChops, Image
from architectures import fornet
from isplutils.data import FrameFaceIterableDataset, load_face
def main():
# Args
parser = argparse.ArgumentParser()
parser.add_argument('--net', type=str, help='Net model class', required=True)
parser.add_argument('--traindb', type=str, help='Training datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--valdb', type=str, help='Validation datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--dfdc_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--dfdc_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the DFDC dataset. '
'Required for training/validating on the DFDC dataset.')
parser.add_argument('--ffpp_faces_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces.py on the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
parser.add_argument('--ffpp_faces_dir', type=str, action='store',
help='Path to the directory containing the faces extracted from the FF++ dataset. '
'Required for training/validating on the FF++ dataset.')
parser.add_argument('--face', type=str, help='Face crop or scale', required=True,
choices=['scale', 'tight'])
parser.add_argument('--size', type=int, help='Train patch size', required=True)
parser.add_argument('--batch', type=int, help='Batch size to fit in GPU memory', default=32)
parser.add_argument('--lr', type=float, default=1e-5, help='Learning rate')
parser.add_argument('--valint', type=int, help='Validation interval (iterations)', default=500)
parser.add_argument('--patience', type=int, help='Patience before dropping the LR [validation intervals]',
default=10)
parser.add_argument('--maxiter', type=int, help='Maximum number of iterations', default=20000)
parser.add_argument('--init', type=str, help='Weight initialization file')
parser.add_argument('--scratch', action='store_true', help='Train from scratch')
parser.add_argument('--trainsamples', type=int, help='Limit the number of train samples per epoch', default=-1)
parser.add_argument('--valsamples', type=int, help='Limit the number of validation samples per epoch',
default=6000)
parser.add_argument('--logint', type=int, help='Training log interval (iterations)', default=100)
parser.add_argument('--workers', type=int, help='Num workers for data loaders', default=6)
parser.add_argument('--device', type=int, help='GPU device id', default=0)
parser.add_argument('--seed', type=int, help='Random seed', default=0)
parser.add_argument('--debug', action='store_true', help='Activate debug')
parser.add_argument('--suffix', type=str, help='Suffix to default tag')
parser.add_argument('--attention', action='store_true',
help='Enable Tensorboard log of attention masks')
parser.add_argument('--log_dir', type=str, help='Directory for saving the training logs',
default='runs/binclass/')
parser.add_argument('--models_dir', type=str, help='Directory for saving the models weights',
default='weights/binclass/')
args = parser.parse_args()
# Parse arguments
net_class = getattr(fornet, args.net)
train_datasets = args.traindb
val_datasets = args.valdb
dfdc_df_path = args.dfdc_faces_df_path
ffpp_df_path = args.ffpp_faces_df_path
dfdc_faces_dir = args.dfdc_faces_dir
ffpp_faces_dir = args.ffpp_faces_dir
face_policy = args.face
face_size = args.size
batch_size = args.batch
initial_lr = args.lr
validation_interval = args.valint
patience = args.patience
max_num_iterations = args.maxiter
initial_model = args.init
train_from_scratch = args.scratch
max_train_samples = args.trainsamples
max_val_samples = args.valsamples
log_interval = args.logint
num_workers = args.workers
device = torch.device('cuda:{:d}'.format(args.device)) if torch.cuda.is_available() else torch.device('cpu')
seed = args.seed
debug = args.debug
suffix = args.suffix
enable_attention = args.attention
weights_folder = args.models_dir
logs_folder = args.log_dir
# Random initialization
np.random.seed(seed)
torch.random.manual_seed(seed)
# Load net
net: nn.Module = net_class().to(device)
# Loss and optimizers
criterion = nn.BCEWithLogitsLoss()
min_lr = initial_lr * 1e-5
optimizer = optim.Adam(net.get_trainable_parameters(), lr=initial_lr)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
mode='min',
factor=0.1,
patience=patience,
cooldown=2 * patience,
min_lr=min_lr,
)
tag = utils.make_train_tag(net_class=net_class,
traindb=train_datasets,
face_policy=face_policy,
patch_size=face_size,
seed=seed,
suffix=suffix,
debug=debug,
)
# Model checkpoint paths
bestval_path = os.path.join(weights_folder, tag, 'bestval.pth')
last_path = os.path.join(weights_folder, tag, 'last.pth')
periodic_path = os.path.join(weights_folder, tag, 'it{:06d}.pth')
os.makedirs(os.path.join(weights_folder, tag), exist_ok=True)
# Load model
val_loss = min_val_loss = 10
epoch = iteration = 0
net_state = None
opt_state = None
if initial_model is not None:
# If given load initial model
print('Loading model form: {}'.format(initial_model))
state = torch.load(initial_model, map_location='cpu')
net_state = state['net']
elif not train_from_scratch and os.path.exists(last_path):
print('Loading model form: {}'.format(last_path))
state = torch.load(last_path, map_location='cpu')
net_state = state['net']
opt_state = state['opt']
iteration = state['iteration'] + 1
epoch = state['epoch']
if not train_from_scratch and os.path.exists(bestval_path):
state = torch.load(bestval_path, map_location='cpu')
min_val_loss = state['val_loss']
if net_state is not None:
incomp_keys = net.load_state_dict(net_state, strict=False)
print(incomp_keys)
if opt_state is not None:
for param_group in opt_state['param_groups']:
param_group['lr'] = initial_lr
optimizer.load_state_dict(opt_state)
# Initialize Tensorboard
logdir = os.path.join(logs_folder, tag)
if iteration == 0:
# If training from scratch or initialization remove history if exists
shutil.rmtree(logdir, ignore_errors=True)
# TensorboardX instance
tb = SummaryWriter(logdir=logdir)
if iteration == 0:
dummy = torch.randn((1, 3, face_size, face_size), device=device)
dummy = dummy.to(device)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
tb.add_graph(net, [dummy, ], verbose=False)
transformer = utils.get_transformer(face_policy=face_policy, patch_size=face_size,
net_normalizer=net.get_normalizer(), train=True)
# Datasets and data loaders
print('Loading data')
# Check if paths for DFDC and FF++ extracted faces and DataFrames are provided
for dataset in train_datasets:
if dataset.split('-')[0] == 'dfdc' and (dfdc_df_path is None or dfdc_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for DFDC faces for training!')
elif dataset.split('-')[0] == 'ff' and (ffpp_df_path is None or ffpp_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for FF++ faces for training!')
for dataset in val_datasets:
if dataset.split('-')[0] == 'dfdc' and (dfdc_df_path is None or dfdc_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for DFDC faces for validation!')
elif dataset.split('-')[0] == 'ff' and (ffpp_df_path is None or ffpp_faces_dir is None):
raise RuntimeError('Specify DataFrame and directory for FF++ faces for validation!')
# Load splits with the make_splits function
splits = split.make_splits(dfdc_df=dfdc_df_path, ffpp_df=ffpp_df_path, dfdc_dir=dfdc_faces_dir, ffpp_dir=ffpp_faces_dir,
dbs={'train': train_datasets, 'val': val_datasets})
train_dfs = [splits['train'][db][0] for db in splits['train']]
train_roots = [splits['train'][db][1] for db in splits['train']]
val_roots = [splits['val'][db][1] for db in splits['val']]
val_dfs = [splits['val'][db][0] for db in splits['val']]
train_dataset = FrameFaceIterableDataset(roots=train_roots,
dfs=train_dfs,
scale=face_policy,
num_samples=max_train_samples,
transformer=transformer,
size=face_size,
)
val_dataset = FrameFaceIterableDataset(roots=val_roots,
dfs=val_dfs,
scale=face_policy,
num_samples=max_val_samples,
transformer=transformer,
size=face_size,
)
train_loader = DataLoader(train_dataset, num_workers=num_workers, batch_size=batch_size, )
val_loader = DataLoader(val_dataset, num_workers=num_workers, batch_size=batch_size, )
print('Training samples: {}'.format(len(train_dataset)))
print('Validation samples: {}'.format(len(val_dataset)))
if len(train_dataset) == 0:
print('No training samples. Halt.')
return
if len(val_dataset) == 0:
print('No validation samples. Halt.')
return
stop = False
while not stop:
# Training
optimizer.zero_grad()
train_loss = train_num = 0
train_pred_list = []
train_labels_list = []
for train_batch in tqdm(train_loader, desc='Epoch {:03d}'.format(epoch), leave=False,
total=len(train_loader) // train_loader.batch_size):
net.train()
batch_data, batch_labels = train_batch
train_batch_num = len(batch_labels)
train_num += train_batch_num
train_labels_list.append(batch_labels.numpy().flatten())
train_batch_loss, train_batch_pred = batch_forward(net, device, criterion, batch_data, batch_labels)
train_pred_list.append(train_batch_pred.flatten())
if torch.isnan(train_batch_loss):
raise ValueError('NaN loss')
train_loss += train_batch_loss.item() * train_batch_num
# Optimization
train_batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
# Logging
if iteration > 0 and (iteration % log_interval == 0):
train_loss /= train_num
tb.add_scalar('train/loss', train_loss, iteration)
tb.add_scalar('lr', optimizer.param_groups[0]['lr'], iteration)
tb.add_scalar('epoch', epoch, iteration)
# Checkpoint
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch, last_path)
train_loss = train_num = 0
# Validation
if iteration > 0 and (iteration % validation_interval == 0):
# Model checkpoint
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch,
periodic_path.format(iteration))
# Train cumulative stats
train_labels = np.concatenate(train_labels_list)
train_pred = np.concatenate(train_pred_list)
train_labels_list = []
train_pred_list = []
train_roc_auc = roc_auc_score(train_labels, train_pred)
tb.add_scalar('train/roc_auc', train_roc_auc, iteration)
tb.add_pr_curve('train/pr', train_labels, train_pred, iteration)
# Validation
val_loss = validation_routine(net, device, val_loader, criterion, tb, iteration, 'val')
tb.flush()
# LR Scheduler
lr_scheduler.step(val_loss)
# Model checkpoint
if val_loss < min_val_loss:
min_val_loss = val_loss
save_model(net, optimizer, train_loss, val_loss, iteration, batch_size, epoch, bestval_path)
# Attention
if enable_attention and hasattr(net, 'get_attention'):
net.eval()
# For each dataframe show the attention for a real,fake couple of frames
for df, root, sample_idx, tag in [
(train_dfs[0], train_roots[0], train_dfs[0][train_dfs[0]['label'] == False].index[0],
'train/att/real'),
(train_dfs[0], train_roots[0], train_dfs[0][train_dfs[0]['label'] == True].index[0],
'train/att/fake'),
]:
record = df.loc[sample_idx]
tb_attention(tb, tag, iteration, net, device, face_size, face_policy,
transformer, root, record)
if optimizer.param_groups[0]['lr'] == min_lr:
print('Reached minimum learning rate. Stopping.')
stop = True
break
iteration += 1
if iteration > max_num_iterations:
print('Maximum number of iterations reached')
stop = True
break
# End of iteration
epoch += 1
# Needed to flush out last events
tb.close()
print('Completed')
def tb_attention(tb: SummaryWriter,
tag: str,
iteration: int,
net: nn.Module,
device: torch.device,
patch_size_load: int,
face_crop_scale: str,
val_transformer: A.BasicTransform,
root: str,
record: pd.Series,
):
# Crop face
sample_t = load_face(record=record, root=root, size=patch_size_load, scale=face_crop_scale,
transformer=val_transformer)
sample_t_clean = load_face(record=record, root=root, size=patch_size_load, scale=face_crop_scale,
transformer=ToTensorV2())
if torch.cuda.is_available():
sample_t = sample_t.cuda(device)
# Transform
# Feed to net
with torch.no_grad():
att: torch.Tensor = net.get_attention(sample_t.unsqueeze(0))[0].cpu()
att_img: Image.Image = ToPILImage()(att)
sample_img = ToPILImage()(sample_t_clean)
att_img = att_img.resize(sample_img.size, resample=Image.NEAREST).convert('RGB')
sample_att_img = ImageChops.multiply(sample_img, att_img)
sample_att = ToTensor()(sample_att_img)
tb.add_image(tag=tag, img_tensor=sample_att, global_step=iteration)
def batch_forward(net: nn.Module, device: torch.device, criterion, data: torch.Tensor, labels: torch.Tensor) -> (
torch.Tensor, float, int):
data = data.to(device)
labels = labels.to(device)
out = net(data)
pred = torch.sigmoid(out).detach().cpu().numpy()
loss = criterion(out, labels)
return loss, pred
def validation_routine(net, device, val_loader, criterion, tb, iteration, tag: str, loader_len_norm: int = None):
net.eval()
loader_len_norm = loader_len_norm if loader_len_norm is not None else val_loader.batch_size
val_num = 0
val_loss = 0.
pred_list = list()
labels_list = list()
for val_data in tqdm(val_loader, desc='Validation', leave=False, total=len(val_loader) // loader_len_norm):
batch_data, batch_labels = val_data
val_batch_num = len(batch_labels)
labels_list.append(batch_labels.flatten())
with torch.no_grad():
val_batch_loss, val_batch_pred = batch_forward(net, device, criterion, batch_data,
batch_labels)
pred_list.append(val_batch_pred.flatten())
val_num += val_batch_num
val_loss += val_batch_loss.item() * val_batch_num
# Logging
val_loss /= val_num
tb.add_scalar('{}/loss'.format(tag), val_loss, iteration)
if isinstance(criterion, nn.BCEWithLogitsLoss):
val_labels = np.concatenate(labels_list)
val_pred = np.concatenate(pred_list)
val_roc_auc = roc_auc_score(val_labels, val_pred)
tb.add_scalar('{}/roc_auc'.format(tag), val_roc_auc, iteration)
tb.add_pr_curve('{}/pr'.format(tag), val_labels, val_pred, iteration)
return val_loss
def save_model(net: nn.Module, optimizer: optim.Optimizer,
train_loss: float, val_loss: float,
iteration: int, batch_size: int, epoch: int,
path: str):
path = str(path)
state = dict(net=net.state_dict(),
opt=optimizer.state_dict(),
train_loss=train_loss,
val_loss=val_loss,
iteration=iteration,
batch_size=batch_size,
epoch=epoch)
torch.save(state, path)
if __name__ == '__main__':
main()