Spaces:
Running
Running
""" | |
This code is adapted from: https://github.com/wielandbrendel/bag-of-local-features-models | |
""" | |
import torch.nn as nn | |
import math | |
import torch | |
from collections import OrderedDict | |
from torch.utils import model_zoo | |
from .normalizer import Normalizer | |
import os | |
dir_path = os.path.dirname(os.path.realpath(__file__)) | |
__all__ = ['bagnet9', 'bagnet17', 'bagnet33'] | |
model_urls = { | |
'bagnet9': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet8-34f4ccd2.pth.tar', | |
'bagnet17': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet16-105524de.pth.tar', | |
'bagnet33': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet32-2ddd53ed.pth.tar', | |
} | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, kernel_size=1): | |
super(Bottleneck, self).__init__() | |
# print('Creating bottleneck with kernel size {} and stride {} with padding {}'.format(kernel_size, stride, (kernel_size - 1) // 2)) | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=kernel_size, stride=stride, | |
padding=0, bias=False) # changed padding from (kernel_size - 1) // 2 | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x, **kwargs): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
if residual.size(-1) != out.size(-1): | |
diff = residual.size(-1) - out.size(-1) | |
residual = residual[:,:,:-diff,:-diff] | |
out += residual | |
out = self.relu(out) | |
return out | |
class BagNet(nn.Module): | |
def __init__(self, block, layers, strides=[1, 2, 2, 2], kernel3=[0, 0, 0, 0], num_classes=1000, avg_pool=True): | |
self.inplanes = 64 | |
super(BagNet, self).__init__() | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=1, stride=1, padding=0, | |
bias=False) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(64, momentum=0.001) | |
self.relu = nn.ReLU(inplace=True) | |
self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], kernel3=kernel3[0], prefix='layer1') | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], kernel3=kernel3[1], prefix='layer2') | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], kernel3=kernel3[2], prefix='layer3') | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], kernel3=kernel3[3], prefix='layer4') | |
self.avgpool = nn.AvgPool2d(1, stride=1) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
self.avg_pool = avg_pool | |
self.block = block | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _make_layer(self, block, planes, blocks, stride=1, kernel3=0, prefix=''): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
kernel = 1 if kernel3 == 0 else 3 | |
layers.append(block(self.inplanes, planes, stride, downsample, kernel_size=kernel)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
kernel = 1 if kernel3 <= i else 3 | |
layers.append(block(self.inplanes, planes, kernel_size=kernel)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
if self.avg_pool: | |
x = nn.AvgPool2d(x.size()[2], stride=1)(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
else: | |
x = x.permute(0,2,3,1) | |
x = self.fc(x) | |
return x | |
def bagnet33(pretrained=False, strides=[2, 2, 2, 1], **kwargs): | |
"""Constructs a Bagnet-33 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,1], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['bagnet33'])) | |
return model | |
def bagnet17(pretrained=False, strides=[2, 2, 2, 1], **kwargs): | |
"""Constructs a Bagnet-17 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,0], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['bagnet17'])) | |
return model | |
def bagnet9(pretrained=False, strides=[2, 2, 2, 1], **kwargs): | |
"""Constructs a Bagnet-9 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,0,0], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['bagnet9'])) | |
return model | |
# --- DeepGaze Adaptation ---- | |
class RGBBagNet17(nn.Sequential): | |
def __init__(self): | |
super(RGBBagNet17, self).__init__() | |
self.bagnet = bagnet17(pretrained=True, avg_pool=False) | |
self.normalizer = Normalizer() | |
super(RGBBagNet17, self).__init__(self.normalizer, self.bagnet) | |
class RGBBagNet33(nn.Sequential): | |
def __init__(self): | |
super(RGBBagNet33, self).__init__() | |
self.bagnet = bagnet33(pretrained=True, avg_pool=False) | |
self.normalizer = Normalizer() | |
super(RGBBagNet33, self).__init__(self.normalizer, self.bagnet) | |