mbar0075's picture
Testing Commit
c9baa67
"""
This code is adapted from: https://github.com/wielandbrendel/bag-of-local-features-models
"""
import torch.nn as nn
import math
import torch
from collections import OrderedDict
from torch.utils import model_zoo
from .normalizer import Normalizer
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
__all__ = ['bagnet9', 'bagnet17', 'bagnet33']
model_urls = {
'bagnet9': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet8-34f4ccd2.pth.tar',
'bagnet17': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet16-105524de.pth.tar',
'bagnet33': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet32-2ddd53ed.pth.tar',
}
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, kernel_size=1):
super(Bottleneck, self).__init__()
# print('Creating bottleneck with kernel size {} and stride {} with padding {}'.format(kernel_size, stride, (kernel_size - 1) // 2))
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=kernel_size, stride=stride,
padding=0, bias=False) # changed padding from (kernel_size - 1) // 2
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x, **kwargs):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
if residual.size(-1) != out.size(-1):
diff = residual.size(-1) - out.size(-1)
residual = residual[:,:,:-diff,:-diff]
out += residual
out = self.relu(out)
return out
class BagNet(nn.Module):
def __init__(self, block, layers, strides=[1, 2, 2, 2], kernel3=[0, 0, 0, 0], num_classes=1000, avg_pool=True):
self.inplanes = 64
super(BagNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=1, stride=1, padding=0,
bias=False)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0,
bias=False)
self.bn1 = nn.BatchNorm2d(64, momentum=0.001)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], kernel3=kernel3[0], prefix='layer1')
self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], kernel3=kernel3[1], prefix='layer2')
self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], kernel3=kernel3[2], prefix='layer3')
self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], kernel3=kernel3[3], prefix='layer4')
self.avgpool = nn.AvgPool2d(1, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.avg_pool = avg_pool
self.block = block
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, kernel3=0, prefix=''):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
kernel = 1 if kernel3 == 0 else 3
layers.append(block(self.inplanes, planes, stride, downsample, kernel_size=kernel))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
kernel = 1 if kernel3 <= i else 3
layers.append(block(self.inplanes, planes, kernel_size=kernel))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.avg_pool:
x = nn.AvgPool2d(x.size()[2], stride=1)(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
else:
x = x.permute(0,2,3,1)
x = self.fc(x)
return x
def bagnet33(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
"""Constructs a Bagnet-33 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,1], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['bagnet33']))
return model
def bagnet17(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
"""Constructs a Bagnet-17 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,0], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['bagnet17']))
return model
def bagnet9(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
"""Constructs a Bagnet-9 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,0,0], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['bagnet9']))
return model
# --- DeepGaze Adaptation ----
class RGBBagNet17(nn.Sequential):
def __init__(self):
super(RGBBagNet17, self).__init__()
self.bagnet = bagnet17(pretrained=True, avg_pool=False)
self.normalizer = Normalizer()
super(RGBBagNet17, self).__init__(self.normalizer, self.bagnet)
class RGBBagNet33(nn.Sequential):
def __init__(self):
super(RGBBagNet33, self).__init__()
self.bagnet = bagnet33(pretrained=True, avg_pool=False)
self.normalizer = Normalizer()
super(RGBBagNet33, self).__init__(self.normalizer, self.bagnet)