|
import PyPDF2
|
|
from langchain_community.embeddings import OllamaEmbeddings
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain_community.vectorstores import Chroma
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
from langchain_community.chat_models import ChatOllama
|
|
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
|
import chainlit as cl
|
|
|
|
|
|
|
|
@cl.on_chat_start
|
|
async def on_chat_start():
|
|
files = None
|
|
|
|
|
|
while files is None:
|
|
files = await cl.AskFileMessage(
|
|
content="Please upload a pdf file to begin!",
|
|
accept=["application/pdf"],
|
|
max_size_mb=100,
|
|
timeout=180,
|
|
).send()
|
|
|
|
file = files[0]
|
|
print(file)
|
|
|
|
|
|
elements = [
|
|
cl.Image(name="image", display="inline", path="pic.jpg")
|
|
]
|
|
|
|
msg = cl.Message(content=f"Processing `{file.name}`...",elements=elements)
|
|
await msg.send()
|
|
|
|
|
|
pdf = PyPDF2.PdfReader(file.path)
|
|
pdf_text = ""
|
|
for page in pdf.pages:
|
|
pdf_text += page.extract_text()
|
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=50)
|
|
texts = text_splitter.split_text(pdf_text)
|
|
|
|
|
|
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
|
|
|
|
|
embeddings = OllamaEmbeddings(model="nomic-embed-text")
|
|
docsearch = await cl.make_async(Chroma.from_texts)(
|
|
texts, embeddings, metadatas=metadatas
|
|
)
|
|
|
|
|
|
message_history = ChatMessageHistory()
|
|
|
|
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history",
|
|
output_key="answer",
|
|
chat_memory=message_history,
|
|
return_messages=True,
|
|
)
|
|
|
|
|
|
chain = ConversationalRetrievalChain.from_llm(
|
|
ChatOllama(model="gemma:7b"),
|
|
chain_type="stuff",
|
|
retriever=docsearch.as_retriever(),
|
|
memory=memory,
|
|
return_source_documents=True,
|
|
)
|
|
|
|
|
|
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
|
await msg.update()
|
|
|
|
cl.user_session.set("chain", chain)
|
|
|
|
|
|
@cl.on_message
|
|
async def main(message: cl.Message):
|
|
|
|
chain = cl.user_session.get("chain")
|
|
|
|
cb = cl.AsyncLangchainCallbackHandler()
|
|
|
|
|
|
res = await chain.ainvoke(message.content, callbacks=[cb])
|
|
answer = res["answer"]
|
|
source_documents = res["source_documents"]
|
|
|
|
text_elements = []
|
|
|
|
|
|
if source_documents:
|
|
for source_idx, source_doc in enumerate(source_documents):
|
|
source_name = f"source_{source_idx}"
|
|
|
|
text_elements.append(
|
|
cl.Text(content=source_doc.page_content, name=source_name)
|
|
)
|
|
source_names = [text_el.name for text_el in text_elements]
|
|
|
|
|
|
if source_names:
|
|
answer += f"\nSources: {', '.join(source_names)}"
|
|
else:
|
|
answer += "\nNo sources found"
|
|
|
|
await cl.Message(content=answer, elements=text_elements).send() |