Spaces:
Running
Running
# load the libraries for the application | |
# ------------------------------------------- | |
import os | |
import re | |
import nltk | |
import torch | |
import librosa | |
import tempfile | |
import subprocess | |
import gradio as gr | |
from scipy.io import wavfile | |
from nnet import utils, commons | |
from transformers import pipeline | |
from scipy.io.wavfile import write | |
from faster_whisper import WhisperModel | |
from nnet.models import SynthesizerTrn as vitsTRN | |
from nnet.models_vc import SynthesizerTrn as freeTRN | |
from nnet.mel_processing import mel_spectrogram_torch | |
from configurations.get_constants import constantConfig | |
from speaker_encoder.voice_encoder import SpeakerEncoder | |
from df_local.enhance import enhance, init_df, load_audio, save_audio | |
from configurations.get_hyperparameters import hyperparameterConfig | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
nltk.download('punkt') | |
from nltk.tokenize import sent_tokenize | |
# making the FreeVC function | |
# --------------------------------- | |
class FreeVCModel: | |
def __init__(self, config, ptfile, speaker_model, wavLM_model, device='cpu'): | |
self.hps = utils.get_hparams_from_file(config) | |
self.net_g = freeTRN( | |
self.hps.data.filter_length // 2 + 1, | |
self.hps.train.segment_size // self.hps.data.hop_length, | |
**self.hps.model | |
).to(hyperparameters.device) | |
_ = self.net_g.eval() | |
_ = utils.load_checkpoint(ptfile, self.net_g, None, True) | |
self.cmodel = utils.get_cmodel(device, wavLM_model) | |
if self.hps.model.use_spk: | |
self.smodel = SpeakerEncoder(speaker_model) | |
def convert(self, src, tgt): | |
fs_src, src_audio = src | |
fs_tgt, tgt_audio = tgt | |
src = f"{constants.temp_audio_folder}/src.wav" | |
tgt = f"{constants.temp_audio_folder}/tgt.wav" | |
out = f"{constants.temp_audio_folder}/cnvr.wav" | |
with torch.no_grad(): | |
wavfile.write(tgt, fs_tgt, tgt_audio) | |
wav_tgt, _ = librosa.load(tgt, sr=self.hps.data.sampling_rate) | |
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) | |
if self.hps.model.use_spk: | |
g_tgt = self.smodel.embed_utterance(wav_tgt) | |
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(hyperparameters.device.type) | |
else: | |
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(hyperparameters.device.type) | |
mel_tgt = mel_spectrogram_torch( | |
wav_tgt, | |
self.hps.data.filter_length, | |
self.hps.data.n_mel_channels, | |
self.hps.data.sampling_rate, | |
self.hps.data.hop_length, | |
self.hps.data.win_length, | |
self.hps.data.mel_fmin, | |
self.hps.data.mel_fmax, | |
) | |
wavfile.write(src, fs_src, src_audio) | |
wav_src, _ = librosa.load(src, sr=self.hps.data.sampling_rate) | |
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(hyperparameters.device.type) | |
c = utils.get_content(self.cmodel, wav_src) | |
if self.hps.model.use_spk: | |
audio = self.net_g.infer(c, g=g_tgt) | |
else: | |
audio = self.net_g.infer(c, mel=mel_tgt) | |
audio = audio[0][0].data.cpu().float().numpy() | |
write(out, 24000, audio) | |
return out | |
# load the system configurations | |
constants = constantConfig() | |
hyperparameters = hyperparameterConfig() | |
# load the models | |
model, df_state, _ = init_df(hyperparameters.voice_enhacing_model, config_allow_defaults=True) # voice enhancing model | |
stt_model = WhisperModel(hyperparameters.stt_model, device=hyperparameters.device.type, compute_type="float32") #speech to text model | |
trans_model = AutoModelForSeq2SeqLM.from_pretrained(constants.model_name_dict[hyperparameters.nllb_model], torch_dtype=torch.bfloat16).to(hyperparameters.device) | |
trans_tokenizer = AutoTokenizer.from_pretrained(constants.model_name_dict[hyperparameters.nllb_model]) | |
modelConvertSpeech = FreeVCModel(config=hyperparameters.text2speech_config, ptfile=hyperparameters.text2speech_model, | |
speaker_model=hyperparameters.text2speech_encoder, wavLM_model=hyperparameters.wavlm_model, | |
device=hyperparameters.device.type) | |
# download the language model if doesn't existing | |
# ---------------------------------------------------- | |
def download(lang, lang_directory): | |
if not os.path.exists(f"{lang_directory}/{lang}"): | |
cmd = ";".join([ | |
f"wget {constants.language_download_web}/{lang}.tar.gz -O {lang_directory}/{lang}.tar.gz", | |
f"tar zxvf {lang_directory}/{lang}.tar.gz -C {lang_directory}" | |
]) | |
subprocess.check_output(cmd, shell=True) | |
try: | |
os.remove(f"{lang_directory}/{lang}.tar.gz") | |
except: | |
pass | |
return f"{lang_directory}/{lang}" | |
def preprocess_char(text, lang=None): | |
""" | |
Special treatement of characters in certain languages | |
""" | |
if lang == 'ron': | |
text = text.replace("ț", "ţ") | |
return text | |
def preprocess_text(txt, text_mapper, hps, uroman_dir=None, lang=None): | |
txt = preprocess_char(txt, lang=lang) | |
is_uroman = hps.data.training_files.split('.')[-1] == 'uroman' | |
if is_uroman: | |
txt = text_mapper.uromanize(txt, f'{uroman_dir}/bin/uroman.pl') | |
txt = txt.lower() | |
txt = text_mapper.filter_oov(txt) | |
return txt | |
def detect_language(text,LID): | |
predictions = LID.predict(text) | |
detected_lang_code = predictions[0][0].replace("__label__", "") | |
return detected_lang_code | |
# text to speech | |
class TextMapper(object): | |
def __init__(self, vocab_file): | |
self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()] | |
self.SPACE_ID = self.symbols.index(" ") | |
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)} | |
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)} | |
def text_to_sequence(self, text, cleaner_names): | |
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. | |
Args: | |
text: string to convert to a sequence | |
cleaner_names: names of the cleaner functions to run the text through | |
Returns: | |
List of integers corresponding to the symbols in the text | |
''' | |
sequence = [] | |
clean_text = text.strip() | |
for symbol in clean_text: | |
symbol_id = self._symbol_to_id[symbol] | |
sequence += [symbol_id] | |
return sequence | |
def uromanize(self, text, uroman_pl): | |
with tempfile.NamedTemporaryFile() as tf, \ | |
tempfile.NamedTemporaryFile() as tf2: | |
with open(tf.name, "w") as f: | |
f.write("\n".join([text])) | |
cmd = f"perl " + uroman_pl | |
cmd += f" -l xxx " | |
cmd += f" < {tf.name} > {tf2.name}" | |
os.system(cmd) | |
outtexts = [] | |
with open(tf2.name) as f: | |
for line in f: | |
line = re.sub(r"\s+", " ", line).strip() | |
outtexts.append(line) | |
outtext = outtexts[0] | |
return outtext | |
def get_text(self, text, hps): | |
text_norm = self.text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def filter_oov(self, text): | |
val_chars = self._symbol_to_id | |
txt_filt = "".join(list(filter(lambda x: x in val_chars, text))) | |
return txt_filt | |
def speech_to_text(audio_file): | |
try: | |
fs, audio = audio_file | |
wavfile.write(constants.input_speech_file, fs, audio) | |
audio0, _ = load_audio(constants.input_speech_file, sr=df_state.sr()) | |
# Enhance the SNR of the audio | |
enhanced = enhance(model, df_state, audio0) | |
save_audio(constants.enhanced_speech_file, enhanced, df_state.sr()) | |
segments, info = stt_model.transcribe(constants.enhanced_speech_file) | |
speech_text = '' | |
for segment in segments: | |
speech_text = f'{speech_text}{segment.text}' | |
try: | |
source_lang_nllb = [k for k, v in constants.flores_codes_to_tts_codes.items() if v[:2] == info.language][0] | |
except: | |
source_lang_nllb = 'language cant be determined, select manually' | |
# text translation | |
return speech_text, gr.Dropdown.update(value=source_lang_nllb) | |
except: | |
return '', gr.Dropdown.update(value='English') | |
# Text tp speech | |
def text_to_speech(text, target_lang): | |
txt = text | |
# LANG = get_target_tts_lang(target_lang) | |
LANG = constants.flores_codes_to_tts_codes[target_lang] | |
ckpt_dir = download(LANG, lang_directory=constants.language_directory) | |
vocab_file = f"{ckpt_dir}/{constants.language_vocab_text}" | |
config_file = f"{ckpt_dir}/{constants.language_vocab_configuration}" | |
hps = utils.get_hparams_from_file(config_file) | |
text_mapper = TextMapper(vocab_file) | |
net_g = vitsTRN( | |
len(text_mapper.symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model) | |
net_g.to(hyperparameters.device) | |
_ = net_g.eval() | |
g_pth = f"{ckpt_dir}/{constants.language_vocab_model}" | |
_ = utils.load_checkpoint(g_pth, net_g, None) | |
txt = preprocess_text(txt, text_mapper, hps, lang=LANG, uroman_dir=constants.uroman_directory) | |
stn_tst = text_mapper.get_text(txt, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(hyperparameters.device) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(hyperparameters.device) | |
hyp = net_g.infer( | |
x_tst, x_tst_lengths, noise_scale=.667, | |
noise_scale_w=0.8, length_scale=1.0 | |
)[0][0,0].cpu().float().numpy() | |
return hps.data.sampling_rate, hyp | |
def translation(audio, text, source_lang_nllb, target_code_nllb, output_type, sentence_mode): | |
target_code = constants.flores_codes[target_code_nllb] | |
translator = pipeline('translation', model=trans_model, tokenizer=trans_tokenizer, src_lang=source_lang_nllb, tgt_lang=target_code, device=hyperparameters.device) | |
# output = translator(text, max_length=400)[0]['translation_text'] | |
if sentence_mode == "Sentence-wise": | |
sentences = sent_tokenize(text) | |
translated_sentences = [] | |
for sentence in sentences: | |
translated_sentence = translator(sentence, max_length=400)[0]['translation_text'] | |
translated_sentences.append(translated_sentence) | |
output = ' '.join(translated_sentences) | |
else: | |
output = translator(text, max_length=1024)[0]['translation_text'] | |
# get the text to speech | |
fs_out, audio_out = text_to_speech(output, target_code_nllb) | |
if output_type == 'own voice': | |
out_file = modelConvertSpeech.convert((fs_out, audio_out), audio) | |
return output, out_file | |
wavfile.write(constants.text2speech_wavfile, fs_out, audio_out) | |
return output, constants.text2speech_wavfile | |
with gr.Blocks(title = "Octopus Translation App") as octopus_translator: | |
with gr.Row(): | |
audio_file = gr.Audio(source="microphone") | |
with gr.Row(): | |
input_text = gr.Textbox(label="Input text") | |
source_language = gr.Dropdown(list(constants.flores_codes.keys()), value='English', label='Source (Autoselected)', interactive=True) | |
with gr.Row(): | |
output_text = gr.Textbox(label='Translated text') | |
target_language = gr.Dropdown(list(constants.flores_codes.keys()), value='German', label='Target', interactive=True) | |
with gr.Row(): | |
output_speech = gr.Audio(label='Translated speech') | |
translate_button = gr.Button('Translate') | |
with gr.Row(): | |
enhance_audio = gr.Radio(['yes', 'no'], value='yes', label='Enhance input voice', interactive=True) | |
input_type = gr.Radio(['Whole text', 'Sentence-wise'],value='Sentence-wise', label="Translation Mode", interactive=True) | |
output_audio_type = gr.Radio(['standard speaker', 'voice transfer'], value='voice transfer', label='Enhance output voice', interactive=True) | |
audio_file.change(speech_to_text, | |
inputs=[audio_file], | |
outputs=[input_text, source_language]) | |
translate_button.click(translation, | |
inputs=[audio_file, input_text, | |
source_language, target_language, | |
output_audio_type, input_type], | |
outputs=[output_text, output_speech]) | |
octopus_translator.launch(share=False) | |