Spaces:
Running
Running
from abc import ABC, abstractmethod | |
from typing import Dict, Final | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
class MultiFrameModule(nn.Module, ABC): | |
"""Multi-frame speech enhancement modules. | |
Signal model and notation: | |
Noisy: `x = s + n` | |
Enhanced: `y = f(x)` | |
Objective: `min ||s - y||` | |
PSD: Power spectral density, notated eg. as `Rxx` for noisy PSD. | |
IFC: Inter-frame correlation vector: PSD*u, u: selection vector. Notated as `rxx` | |
""" | |
num_freqs: Final[int] | |
frame_size: Final[int] | |
need_unfold: Final[bool] | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0): | |
"""Multi-Frame filtering module. | |
Args: | |
num_freqs (int): Number of frequency bins used for filtering. | |
frame_size (int): Frame size in FD domain. | |
lookahead (int): Lookahead, may be used to select the output time step. Note: This | |
module does not add additional padding according to lookahead! | |
""" | |
super().__init__() | |
self.num_freqs = num_freqs | |
self.frame_size = frame_size | |
self.pad = nn.ConstantPad2d((0, 0, frame_size - 1, 0), 0.0) | |
self.need_unfold = frame_size > 1 | |
self.lookahead = lookahead | |
def spec_unfold(self, spec: Tensor): | |
"""Pads and unfolds the spectrogram according to frame_size. | |
Args: | |
spec (complex Tensor): Spectrogram of shape [B, C, T, F] | |
Returns: | |
spec (Tensor): Unfolded spectrogram of shape [B, C, T, F, N], where N: frame_size. | |
""" | |
if self.need_unfold: | |
return self.pad(spec).unfold(2, self.frame_size, 1) | |
return spec.unsqueeze(-1) | |
def forward(self, spec: Tensor, coefs: Tensor): | |
"""Pads and unfolds the spectrogram and forwards to impl. | |
Args: | |
spec (Tensor): Spectrogram of shape [B, C, T, F, 2] | |
coefs (Tensor): Spectrogram of shape [B, C, T, F, 2] | |
""" | |
spec_u = self.spec_unfold(torch.view_as_complex(spec)) | |
coefs = torch.view_as_complex(coefs) | |
spec_f = spec_u.narrow(-2, 0, self.num_freqs) | |
spec_f = self.forward_impl(spec_f, coefs) | |
if self.training: | |
spec = spec.clone() | |
spec[..., : self.num_freqs, :] = torch.view_as_real(spec_f) | |
return spec | |
def forward_impl(self, spec: Tensor, coefs: Tensor) -> Tensor: | |
"""Forward impl taking complex spectrogram and coefficients. | |
Args: | |
spec (complex Tensor): Spectrogram of shape [B, C1, T, F, N] | |
coefs (complex Tensor): Coefficients [B, C2, T, F] | |
Returns: | |
spec (complex Tensor): Enhanced spectrogram of shape [B, C1, T, F] | |
""" | |
... | |
def num_channels(self) -> int: | |
"""Return the number of required channels. | |
If multiple inputs are required, then all these should be combined in one Tensor containing | |
the summed channels. | |
""" | |
... | |
def psd(x: Tensor, n: int) -> Tensor: | |
"""Compute the PSD correlation matrix Rxx for a spectrogram. | |
That is, `X*conj(X)`, where `*` is the outer product. | |
Args: | |
x (complex Tensor): Spectrogram of shape [B, C, T, F]. Will be unfolded with `n` steps over | |
the time axis. | |
Returns: | |
Rxx (complex Tensor): Correlation matrix of shape [B, C, T, F, N, N] | |
""" | |
x = F.pad(x, (0, 0, n - 1, 0)).unfold(-2, n, 1) | |
return torch.einsum("...n,...m->...mn", x, x.conj()) | |
def df(spec: Tensor, coefs: Tensor) -> Tensor: | |
"""Deep filter implemenation using `torch.einsum`. Requires unfolded spectrogram. | |
Args: | |
spec (complex Tensor): Spectrogram of shape [B, C, T, F, N] | |
coefs (complex Tensor): Spectrogram of shape [B, C, N, T, F] | |
Returns: | |
spec (complex Tensor): Spectrogram of shape [B, C, T, F] | |
""" | |
return torch.einsum("...tfn,...ntf->...tf", spec, coefs) | |
class CRM(MultiFrameModule): | |
"""Complex ratio mask.""" | |
def __init__(self, num_freqs: int, frame_size: int = 1, lookahead: int = 0): | |
assert frame_size == 1 and lookahead == 0, (frame_size, lookahead) | |
super().__init__(num_freqs, 1) | |
def forward_impl(self, spec: Tensor, coefs: Tensor): | |
return spec.squeeze(-1).mul(coefs) | |
def num_channels(self): | |
return 2 | |
class DF(MultiFrameModule): | |
conj: Final[bool] | |
"""Deep Filtering.""" | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0, conj: bool = False): | |
super().__init__(num_freqs, frame_size, lookahead) | |
self.conj = conj | |
def forward_impl(self, spec: Tensor, coefs: Tensor): | |
coefs = coefs.view(coefs.shape[0], -1, self.frame_size, *coefs.shape[2:]) | |
if self.conj: | |
coefs = coefs.conj() | |
return df(spec, coefs) | |
def num_channels(self): | |
return self.frame_size * 2 | |
class MfWf(MultiFrameModule): | |
"""Multi-frame Wiener filter base module.""" | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0): | |
"""Multi-frame Wiener Filter. | |
Several implementation methods are available resulting in different number of required input | |
coefficient channels. | |
Methods: | |
psd_ifc: Predict PSD `Rxx` and IFC `rss`. | |
df: Use deep filtering to predict speech and noisy spectrograms. These will be used for | |
PSD calculation for Wiener filtering. Alias: `df_sx` | |
c: Directly predict Wiener filter coefficients. Computation same as deep filtering. | |
""" | |
super().__init__(num_freqs, frame_size, lookahead=0) | |
self.idx = -lookahead | |
def num_channels(self): | |
return self.num_channels | |
def solve(Rxx, rss, diag_eps: float = 1e-8, eps: float = 1e-7) -> Tensor: | |
return torch.einsum( | |
"...nm,...m->...n", torch.inverse(_tik_reg(Rxx, diag_eps, eps)), rss | |
) # [T, F, N] | |
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor: | |
"""Multi-frame Wiener filter impl taking complex spectrogram and coefficients. | |
Coefficients may be split into multiple parts w.g. for multiple DF coefs or PSDs. | |
Args: | |
spec (complex Tensor): Spectrogram of shape [B, C1, T, F, N] | |
coefs (complex Tensor): Coefficients [B, C2, T, F] | |
Returns: | |
c (complex Tensor): MfWf coefs of shape [B, C1, T, F, N] | |
""" | |
... | |
def forward_impl(self, spec: Tensor, coefs: Tensor) -> Tensor: | |
coefs = self.mfwf(spec, coefs) | |
return self.apply_coefs(spec, coefs) | |
def apply_coefs(spec: Tensor, coefs: Tensor) -> Tensor: | |
# spec: [B, C, T, F, N] | |
# coefs: [B, C, T, F, N] | |
return torch.einsum("...n,...n->...", spec, coefs) | |
class MfWfDf(MfWf): | |
eps_diag: Final[float] | |
def __init__( | |
self, | |
num_freqs: int, | |
frame_size: int, | |
lookahead: int = 0, | |
eps_diag: float = 1e-7, | |
eps: float = 1e-7, | |
): | |
super().__init__(num_freqs, frame_size, lookahead) | |
self.eps_diag = eps_diag | |
self.eps = eps | |
def num_channels(self): | |
# frame_size/df_order * 2 (x/s) * 2 (re/im) | |
return self.frame_size * 4 | |
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor: | |
coefs.chunk | |
df_s, df_x = torch.chunk(coefs, 2, 1) # [B, C, T, F, N] | |
df_s = df_s.unflatten(1, (-1, self.frame_size)) | |
df_x = df_x.unflatten(1, (-1, self.frame_size)) | |
spec_s = df(spec, df_s) # [B, C, T, F] | |
spec_x = df(spec, df_x) | |
Rss = psd(spec_s, self.frame_size) # [B, C, T, F, N. N] | |
Rxx = psd(spec_x, self.frame_size) | |
rss = Rss[..., -1] # TODO: use -1 or self.idx? | |
c = self.solve(Rxx, rss, self.eps_diag, self.eps) # [B, C, T, F, N] | |
return c | |
class MfWfPsd(MfWf): | |
"""Multi-frame Wiener filter by predicting noisy PSD `Rxx` and speech IFC `rss`.""" | |
def num_channels(self): | |
# (Rxx + rss) * 2 (re/im) | |
return (self.frame_size**2 + self.frame_size) * 2 | |
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor: # type: ignore | |
Rxx, rss = torch.split(coefs.movedim(1, -1), [self.frame_size**2, self.frame_size], -1) | |
c = self.solve(Rxx.unflatten(-1, (self.frame_size, self.frame_size)), rss) | |
return c | |
class MfWfC(MfWf): | |
"""Multi-frame Wiener filter by directly predicting the MfWf coefficients.""" | |
def num_channels(self): | |
# mfwf coefs * 2 (re/im) | |
return self.frame_size * 2 | |
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor: # type: ignore | |
coefs = coefs.unflatten(1, (-1, self.frame_size)).permute( | |
0, 1, 3, 4, 2 | |
) # [B, C*N, T, F] -> [B, C, T, F, N] | |
return coefs | |
class MvdrSouden(MultiFrameModule): | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0): | |
super().__init__(num_freqs, frame_size, lookahead) | |
class MvdrEvd(MultiFrameModule): | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0): | |
super().__init__(num_freqs, frame_size, lookahead) | |
class MvdrRtfPower(MultiFrameModule): | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0): | |
super().__init__(num_freqs, frame_size, lookahead) | |
MF_METHODS: Dict[str, MultiFrameModule] = { | |
"crm": CRM, | |
"df": DF, | |
"mfwf_df": MfWfDf, | |
"mfwf_df_sx": MfWfDf, | |
"mfwf_psd": MfWfPsd, | |
"mfwf_psd_ifc": MfWfPsd, | |
"mfwf_c": MfWfC, | |
} | |
# From torchaudio | |
def _compute_mat_trace(input: torch.Tensor, dim1: int = -1, dim2: int = -2) -> torch.Tensor: | |
r"""Compute the trace of a Tensor along ``dim1`` and ``dim2`` dimensions. | |
Args: | |
input (torch.Tensor): Tensor of dimension `(..., channel, channel)` | |
dim1 (int, optional): the first dimension of the diagonal matrix | |
(Default: -1) | |
dim2 (int, optional): the second dimension of the diagonal matrix | |
(Default: -2) | |
Returns: | |
Tensor: trace of the input Tensor | |
""" | |
assert input.ndim >= 2, "The dimension of the tensor must be at least 2." | |
assert ( | |
input.shape[dim1] == input.shape[dim2] | |
), "The size of ``dim1`` and ``dim2`` must be the same." | |
input = torch.diagonal(input, 0, dim1=dim1, dim2=dim2) | |
return input.sum(dim=-1) | |
def _tik_reg(mat: torch.Tensor, reg: float = 1e-7, eps: float = 1e-8) -> torch.Tensor: | |
"""Perform Tikhonov regularization (only modifying real part). | |
Args: | |
mat (torch.Tensor): input matrix (..., channel, channel) | |
reg (float, optional): regularization factor (Default: 1e-8) | |
eps (float, optional): a value to avoid the correlation matrix is all-zero (Default: ``1e-8``) | |
Returns: | |
Tensor: regularized matrix (..., channel, channel) | |
""" | |
# Add eps | |
C = mat.size(-1) | |
eye = torch.eye(C, dtype=mat.dtype, device=mat.device) | |
epsilon = _compute_mat_trace(mat).real[..., None, None] * reg | |
# in case that correlation_matrix is all-zero | |
epsilon = epsilon + eps | |
mat = mat + epsilon * eye[..., :, :] | |
return mat | |