Spaces:
Build error
Build error
File size: 1,560 Bytes
41ed540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import torch
import gradio as gr
import json
import os
import matplotlib.pyplot as plt
from phate import PHATEAE
from funcs.som import ClusterSOM
from funcs.tools import numpy_to_native
from funcs.processor import process_data
from funcs.plot_func import plot_sensor_data_from_json
from funcs.dataloader import BaseDataset2, read_json_files
DEVICE = torch.device("cpu")
reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
reducer10d.load('models/r10d_2.pth')
cluster_som = ClusterSOM()
cluster_som.load("models/cluster_som2.pkl")
# ml inference
def get_som_mp4(file, slice_select, reducer=reducer10d, cluster=cluster_som):
try:
train_x, train_y = read_json_files(file)
except:
train_x, train_y = read_json_files(file.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
# prediction = cluster_som.predict(embedding10d)
fig = cluster.plot_activation_v2(embedding10d, slice_select)
plt.savefig('test.png')
return fig
get_som_mp4('Data-JSON/Dressage/Tempi/Trab/Arbeitstrab/20210906-093200-Don-Arbeitstrab.json', 1) |