arcan3 commited on
Commit
41ed540
·
1 Parent(s): 5124a31

added finalise

Browse files
Files changed (6) hide show
  1. .gitignore +1 -0
  2. app.py +1 -1
  3. funcs/dataloader.py +1 -0
  4. funcs/som.py +4 -1
  5. models/r10d.pth +3 -0
  6. test.py +47 -0
.gitignore CHANGED
@@ -1,4 +1,5 @@
1
  # Byte-compiled / optimized / DLL files
 
2
  *.mp4
3
  *.xz
4
  *.json
 
1
  # Byte-compiled / optimized / DLL files
2
+ *.pkg
3
  *.mp4
4
  *.xz
5
  *.json
app.py CHANGED
@@ -13,7 +13,7 @@ from funcs.dataloader import BaseDataset2, read_json_files
13
 
14
  DEVICE = torch.device("cpu")
15
  reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
16
- reducer10d.load('models/r10d_2.pth')
17
 
18
  cluster_som = ClusterSOM()
19
  cluster_som.load("models/cluster_som2.pkl")
 
13
 
14
  DEVICE = torch.device("cpu")
15
  reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
16
+ reducer10d.load('models/r10d.pth')
17
 
18
  cluster_som = ClusterSOM()
19
  cluster_som.load("models/cluster_som2.pkl")
funcs/dataloader.py CHANGED
@@ -1,6 +1,7 @@
1
  import glob, json, os
2
  import torch
3
  import warnings
 
4
 
5
  from torch.utils.data import Dataset
6
 
 
1
  import glob, json, os
2
  import torch
3
  import warnings
4
+ import numpy as np
5
 
6
  from torch.utils.data import Dataset
7
 
funcs/som.py CHANGED
@@ -435,7 +435,10 @@ class ClusterSOM:
435
  if len(self.som_models) == 0:
436
  raise ValueError("SOM models not trained yet.")
437
 
438
- prediction = self.predict([data[int(slice_select)-1]])[0]
 
 
 
439
 
440
  fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
441
  fig.suptitle(f"Activation map for SOM {prediction[0]}, node {prediction[1]}", fontsize=16)
 
435
  if len(self.som_models) == 0:
436
  raise ValueError("SOM models not trained yet.")
437
 
438
+ try:
439
+ prediction = self.predict([data[int(slice_select)-1]])[0]
440
+ except:
441
+ prediction = self.predict([data[int(slice_select)-2]])[0]
442
 
443
  fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
444
  fig.suptitle(f"Activation map for SOM {prediction[0]}, node {prediction[1]}", fontsize=16)
models/r10d.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad5529c863ea3fcaf1525cf59b9352dfe42ff4568ed459ac978baaf818a8ad7d
3
+ size 13100223
test.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ import json
4
+ import os
5
+ import matplotlib.pyplot as plt
6
+
7
+ from phate import PHATEAE
8
+ from funcs.som import ClusterSOM
9
+ from funcs.tools import numpy_to_native
10
+
11
+ from funcs.processor import process_data
12
+ from funcs.plot_func import plot_sensor_data_from_json
13
+ from funcs.dataloader import BaseDataset2, read_json_files
14
+
15
+ DEVICE = torch.device("cpu")
16
+ reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
17
+ reducer10d.load('models/r10d_2.pth')
18
+
19
+ cluster_som = ClusterSOM()
20
+ cluster_som.load("models/cluster_som2.pkl")
21
+
22
+ # ml inference
23
+ def get_som_mp4(file, slice_select, reducer=reducer10d, cluster=cluster_som):
24
+
25
+ try:
26
+ train_x, train_y = read_json_files(file)
27
+ except:
28
+ train_x, train_y = read_json_files(file.name)
29
+
30
+ # Convert tensors to numpy arrays if necessary
31
+ if isinstance(train_x, torch.Tensor):
32
+ train_x = train_x.numpy()
33
+ if isinstance(train_y, torch.Tensor):
34
+ train_y = train_y.numpy()
35
+
36
+ # load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
37
+ data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
38
+
39
+ #compute the 10 dimensional embeding vector
40
+ embedding10d = reducer.transform(data)
41
+
42
+ # prediction = cluster_som.predict(embedding10d)
43
+ fig = cluster.plot_activation_v2(embedding10d, slice_select)
44
+ plt.savefig('test.png')
45
+ return fig
46
+
47
+ get_som_mp4('Data-JSON/Dressage/Tempi/Trab/Arbeitstrab/20210906-093200-Don-Arbeitstrab.json', 1)