cabasus / funcs /som.py
arcan3's picture
added finalise
41ed540
raw
history blame
20.9 kB
import numpy as np
import hdbscan
from minisom import MiniSom
import pickle
from collections import Counter
import matplotlib.pyplot as plt
import phate
import imageio
from tqdm import tqdm
import io
import plotly.graph_objs as go
import plotly.subplots as sp
import umap
from sklearn.datasets import make_blobs
from sklearn.preprocessing import LabelEncoder
from sklearn.cluster import KMeans
from sklearn.semi_supervised import LabelSpreading
from moviepy.editor import *
class ClusterSOM:
def __init__(self):
self.hdbscan_model = None
self.som_models = {}
self.sigma_values = {}
self.mean_values = {}
self.cluster_mapping = {}
self.embedding = None
self.dim_red_op = None
def train(self, dataset, min_samples_per_cluster=100, n_clusters=None, som_size=(20, 20), sigma=1.0, learning_rate=0.5, num_iteration=200000, random_seed=42, n_neighbors=5, coverage=0.95):
"""
Train HDBSCAN and SOM models on the given dataset.
"""
# Train HDBSCAN model
print('Identifying clusters in the embedding ...')
self.hdbscan_model = hdbscan.HDBSCAN(min_cluster_size=min_samples_per_cluster)
self.hdbscan_model.fit(dataset)
# Calculate n_clusters if not provided
if n_clusters is None:
cluster_labels, counts = zip(*Counter(self.hdbscan_model.labels_).most_common())
cluster_labels = list(cluster_labels)
total_points = sum(counts)
covered_points = 0
n_clusters = 0
for count in counts:
covered_points += count
n_clusters += 1
if covered_points / total_points >= coverage:
break
# Train SOM models for the n_clusters most common clusters in the HDBSCAN model
cluster_labels, counts = zip(*Counter(self.hdbscan_model.labels_).most_common(n_clusters + 1))
cluster_labels = list(cluster_labels)
if -1 in cluster_labels:
cluster_labels.remove(-1)
else:
cluster_labels.pop()
for i, label in tqdm(enumerate(cluster_labels), total=len(cluster_labels), desc="Fitting 2D maps"):
if label == -1:
continue # Ignore noise
cluster_data = dataset[self.hdbscan_model.labels_ == label]
som = MiniSom(som_size[0], som_size[1], dataset.shape[1], sigma=sigma, learning_rate=learning_rate, random_seed=random_seed)
som.train_random(cluster_data, num_iteration)
self.som_models[i+1] = som
self.cluster_mapping[i+1] = label
# Compute sigma values
mean_cluster, sigma_cluster = self.compute_sigma_values(cluster_data, som_size, som, n_neighbors=n_neighbors)
self.sigma_values[i+1] = sigma_cluster
self.mean_values[i+1] = mean_cluster
def compute_sigma_values(self, cluster_data, som_size, som, n_neighbors=5):
som_weights = som.get_weights()
# Assign each datapoint to its nearest node
partitions = {idx: [] for idx in np.ndindex(som_size[0], som_size[1])}
for sample in cluster_data:
x, y = som.winner(sample)
partitions[(x, y)].append(sample)
# Compute the mean distance and std deviation of these partitions
mean_cluster = np.zeros(som_size)
sigma_cluster = np.zeros(som_size)
for idx in partitions:
if len(partitions[idx]) > 0:
partition_data = np.array(partitions[idx])
mean_distance = np.mean(np.linalg.norm(partition_data - som_weights[idx], axis=-1))
std_distance = np.std(np.linalg.norm(partition_data - som_weights[idx], axis=-1))
else:
mean_distance = 0
std_distance = 0
mean_cluster[idx] = mean_distance
sigma_cluster[idx] = std_distance
return mean_cluster, sigma_cluster
def train_label(self, labeled_data, labels):
"""
Train on labeled data to find centroids and compute distances to the labels.
"""
le = LabelEncoder()
encoded_labels = le.fit_transform(labels)
unique_labels = np.unique(encoded_labels)
# Use label spreading to propagate the labels
label_prop_model = LabelSpreading(kernel='knn', n_neighbors=5)
label_prop_model.fit(labeled_data, encoded_labels)
# Find the centroids for each label using KMeans
kmeans = KMeans(n_clusters=len(unique_labels), random_state=42)
kmeans.fit(labeled_data)
# Store the label centroids and label encodings
self.label_centroids = kmeans.cluster_centers_
self.label_encodings = le
def predict(self, data, sigma_factor=1.5):
"""
Predict the cluster and BMU SOM coordinate for each sample in the data if it's inside the sigma value.
Also, predict the label and distance to the center of the label if labels are trained.
"""
results = []
for sample in data:
min_distance = float('inf')
nearest_cluster_idx = None
nearest_node = None
for i, som in self.som_models.items():
x, y = som.winner(sample)
node = som.get_weights()[x, y]
distance = np.linalg.norm(sample - node)
if distance < min_distance:
min_distance = distance
nearest_cluster_idx = i
nearest_node = (x, y)
# Check if the nearest node is within the sigma value
if min_distance <= self.mean_values[nearest_cluster_idx][nearest_node] * 1.5: # * self.sigma_values[nearest_cluster_idx][nearest_node] * sigma_factor:
if hasattr(self, 'label_centroids'):
# Predict the label and distance to the center of the label
label_idx = self.label_encodings.inverse_transform([nearest_cluster_idx - 1])[0]
label_distance = np.linalg.norm(sample - self.label_centroids[label_idx])
results.append((nearest_cluster_idx, nearest_node, label_idx, label_distance))
else:
results.append((nearest_cluster_idx, nearest_node))
else:
results.append((-1, None)) # Noise
return results
def plot_embedding(self, new_data=None, dim_reduction='umap', interactive=False):
"""
Plot the dataset and SOM grids for each cluster.
If new_data is provided, it will be used for plotting instead of the entire dataset.
"""
if self.hdbscan_model is None:
raise ValueError("HDBSCAN model not trained yet.")
if len(self.som_models) == 0:
raise ValueError("SOM models not trained yet.")
if dim_reduction not in ['phate', 'umap']:
raise ValueError("Invalid dimensionality reduction method. Use 'phate' or 'umap'.")
if self.dim_red_op is None or self.embedding is None:
n_components = 3
if dim_reduction == 'phate':
self.dim_red_op = phate.PHATE(n_components=n_components, random_state=42)
elif dim_reduction == 'umap':
self.dim_red_op = umap.UMAP(n_components=n_components, random_state=42)
self.embedding = self.dim_red_op.fit_transform(new_data)
if new_data is not None:
new_embedding = self.dim_red_op.transform(new_data)
else:
new_embedding = self.embedding
if interactive:
fig = sp.make_subplots(rows=1, cols=1, specs=[[{'type': 'scatter3d'}]])
else:
fig = plt.figure(figsize=(30, 30))
ax = fig.add_subplot(111, projection='3d')
colors = plt.cm.rainbow(np.linspace(0, 1, len(self.som_models) + 1))
for reindexed_label, som in self.som_models.items():
original_label = self.cluster_mapping[reindexed_label]
cluster_data = embedding[self.hdbscan_model.labels_ == original_label]
som_weights = som.get_weights()
som_embedding = dim_red_op.transform(som_weights.reshape(-1, dataset.shape[1])).reshape(som_weights.shape[0], som_weights.shape[1], n_components)
if interactive:
# Plot the original data points
fig.add_trace(
go.Scatter3d(
x=cluster_data[:, 0],
y=cluster_data[:, 1],
z=cluster_data[:, 2],
mode='markers',
marker=dict(color=colors[reindexed_label], size=1),
name=f"Cluster {reindexed_label}"
)
)
else:
# Plot the original data points
ax.scatter(cluster_data[:, 0], cluster_data[:, 1], cluster_data[:, 2], c=[colors[reindexed_label]], alpha=0.3, s=5, label=f"Cluster {reindexed_label}")
for x in range(som_embedding.shape[0]):
for y in range(som_embedding.shape[1]):
if interactive:
# Plot the SOM grid
fig.add_trace(
go.Scatter3d(
x=[som_embedding[x, y, 0]],
y=[som_embedding[x, y, 1]],
z=[som_embedding[x, y, 2]],
mode='markers+text',
marker=dict(color=colors[reindexed_label], size=3, symbol='circle'),
text=[f"{x},{y}"],
textposition="top center"
)
)
else:
# Plot the SOM grid
ax.plot([som_embedding[x, y, 0]], [som_embedding[x, y, 1]], [som_embedding[x, y, 2]], '+', markersize=8, mew=2, zorder=10, c=colors[reindexed_label])
for i in range(som_embedding.shape[0] - 1):
for j in range(som_embedding.shape[1] - 1):
if interactive:
# Plot the SOM connections
fig.add_trace(
go.Scatter3d(
x=np.append(som_embedding[i:i+2, j, 0], som_embedding[i, j:j+2, 0]),
y=np.append(som_embedding[i:i+2, j, 1], som_embedding[i, j:j+2, 1]),
z=np.append(som_embedding[i:i+2, j, 2], som_embedding[i, j:j+2, 2]),
mode='lines',
line=dict(color=colors[reindexed_label], width=2),
showlegend=False
)
)
else:
# Plot the SOM connections
ax.plot(som_embedding[i:i+2, j, 0], som_embedding[i:i+2, j, 1], som_embedding[i:i+2, j, 2], lw=1, c=colors[reindexed_label])
ax.plot(som_embedding[i, j:j+2, 0], som_embedding[i, j:j+2, 1], som_embedding[i, j:j+2, 2], lw=1, c=colors[reindexed_label])
if interactive:
# Plot noise
noise_data = embedding[self.hdbscan_model.labels_ == -1]
if len(noise_data) > 0:
fig.add_trace(
go.Scatter3d(
x=noise_data[:, 0],
y=noise_data[:, 1],
z=noise_data[:, 2],
mode='markers',
marker=dict(color="gray", size=1),
name="Noise"
)
)
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
fig.show()
else:
# Plot noise
noise_data = embedding[self.hdbscan_model.labels_ == -1]
if len(noise_data) > 0:
ax.scatter(noise_data[:, 0], noise_data[:, 1], noise_data[:, 2], c="gray", label="Noise")
ax.legend()
plt.show()
def plot_label_heatmap(self):
"""
Plot a heatmap for each main cluster showing the best label for each coordinate in a single subplot layout.
"""
if not hasattr(self, 'label_centroids'):
raise ValueError("Labels not trained yet.")
n_labels = len(self.label_centroids)
label_colors = plt.cm.rainbow(np.linspace(0, 1, n_labels))
n_clusters = len(self.som_models)
# Create a subplot layout with a heatmap for each main cluster
n_rows = int(np.ceil(np.sqrt(n_clusters)))
n_cols = n_rows if n_rows * (n_rows - 1) < n_clusters else n_rows - 1
fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols * 10, n_rows * 10), squeeze=False)
for i, (reindexed_label, som) in enumerate(self.som_models.items()):
som_weights = som.get_weights()
label_map = np.zeros(som_weights.shape[:2], dtype=int)
label_distance_map = np.full(som_weights.shape[:2], np.inf)
for label_idx, label_centroid in enumerate(self.label_centroids):
for x in range(som_weights.shape[0]):
for y in range(som_weights.shape[1]):
node = som_weights[x, y]
distance = np.linalg.norm(label_centroid - node)
if distance < label_distance_map[x, y]:
label_distance_map[x, y] = distance
label_map[x, y] = label_idx
row, col = i // n_cols, i % n_cols
ax = axes[row, col]
cmap = plt.cm.rainbow
cmap.set_under(color='white')
im = ax.imshow(label_map, cmap=cmap, origin='lower', interpolation='none', vmin=0.5)
ax.set_xticks(range(label_map.shape[1]))
ax.set_yticks(range(label_map.shape[0]))
ax.grid(True, linestyle='-', linewidth=0.5)
ax.set_title(f"Label Heatmap for Cluster {reindexed_label}")
# Add a colorbar for label colors
cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7])
cbar = fig.colorbar(im, cax=cbar_ax, ticks=range(n_labels))
cbar.ax.set_yticklabels(self.label_encodings.classes_)
# Adjust the layout to fit everything nicely
fig.subplots_adjust(wspace=0.5, hspace=0.5, right=0.9)
plt.show()
def plot_activation(self, data, filename='prediction_output', start=None, end=None):
"""
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
"""
if len(self.som_models) == 0:
raise ValueError("SOM models not trained yet.")
if start is None:
start = 0
if end is None:
end = len(data)
images = []
for sample in tqdm(data[start:end], desc="Visualizing prediction output"):
prediction = self.predict([sample])[0]
# if prediction[0] == -1: # Noise
# continue
fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
fig.suptitle(f"Activation map for SOM {prediction[0]}, node {prediction[1]}", fontsize=16)
for idx, (som_key, som) in enumerate(self.som_models.items()):
ax = axes[idx]
activation_map = np.zeros(som._weights.shape[:2])
for x in range(som._weights.shape[0]):
for y in range(som._weights.shape[1]):
activation_map[x, y] = np.linalg.norm(sample - som._weights[x, y])
winner = som.winner(sample) # Find the BMU for this SOM
activation_map[winner] = 0 # Set the BMU's value to 0 so it will be red in the colormap
if som_key == prediction[0]: # Active SOM
im_active = ax.imshow(activation_map, cmap='viridis', origin='lower', interpolation='none')
ax.plot(winner[1], winner[0], 'r+') # Mark the BMU with a red plus sign
ax.set_title(f"SOM {som_key}", color='blue', fontweight='bold')
if hasattr(self, 'label_centroids'):
label_idx = self.label_encodings.inverse_transform([som_key - 1])[0]
ax.set_xlabel(f"Label: {label_idx}", fontsize=12)
else: # Inactive SOM
im_inactive = ax.imshow(activation_map, cmap='gray', origin='lower', interpolation='none')
ax.set_title(f"SOM {som_key}")
ax.set_xticks(range(activation_map.shape[1]))
ax.set_yticks(range(activation_map.shape[0]))
ax.grid(True, linestyle='-', linewidth=0.5)
# Create a colorbar for each frame
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
try:
fig.colorbar(im_active, cax=cbar_ax)
except:
pass
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = imageio.imread(buf)
images.append(img)
plt.close()
# Save the images as a GIF
imageio.mimsave(f"{filename}.gif", images, duration=500, loop=1)
# Load the gif
gif_file = f"{filename}.gif" # Replace with the path to your GIF file
clip = VideoFileClip(gif_file)
# Convert the gif to mp4
mp4_file = f"{filename}.mp4" # Replace with the desired output path
clip.write_videofile(mp4_file, codec='libx264')
# Close the clip to release resources
clip.close()
def save(self, file_path):
"""
Save the ClusterSOM model to a file.
"""
model_data = (self.hdbscan_model, self.som_models, self.mean_values, self.sigma_values, self.cluster_mapping)
if hasattr(self, 'label_centroids'):
model_data += (self.label_centroids, self.label_encodings)
with open(file_path, "wb") as f:
pickle.dump(model_data, f)
def load(self, file_path):
"""
Load a ClusterSOM model from a file.
"""
with open(file_path, "rb") as f:
model_data = pickle.load(f)
self.hdbscan_model, self.som_models, self.mean_values, self.sigma_values, self.cluster_mapping = model_data[:5]
if len(model_data) > 5:
self.label_centroids, self.label_encodings = model_data[5:]
def plot_activation_v2(self, data, slice_select):
"""
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
"""
if len(self.som_models) == 0:
raise ValueError("SOM models not trained yet.")
try:
prediction = self.predict([data[int(slice_select)-1]])[0]
except:
prediction = self.predict([data[int(slice_select)-2]])[0]
fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
fig.suptitle(f"Activation map for SOM {prediction[0]}, node {prediction[1]}", fontsize=16)
for idx, (som_key, som) in enumerate(self.som_models.items()):
ax = axes[idx]
activation_map = np.zeros(som._weights.shape[:2])
for x in range(som._weights.shape[0]):
for y in range(som._weights.shape[1]):
activation_map[x, y] = np.linalg.norm(data[int(slice_select)-1] - som._weights[x, y])
winner = som.winner(data[int(slice_select)-1]) # Find the BMU for this SOM
activation_map[winner] = 0 # Set the BMU's value to 0 so it will be red in the colormap
if som_key == prediction[0]: # Active SOM
im_active = ax.imshow(activation_map, cmap='viridis', origin='lower', interpolation='none')
ax.plot(winner[1], winner[0], 'r+') # Mark the BMU with a red plus sign
ax.set_title(f"SOM {som_key}", color='blue', fontweight='bold')
if hasattr(self, 'label_centroids'):
label_idx = self.label_encodings.inverse_transform([som_key - 1])[0]
ax.set_xlabel(f"Label: {label_idx}", fontsize=12)
else: # Inactive SOM
im_inactive = ax.imshow(activation_map, cmap='gray', origin='lower', interpolation='none')
ax.set_title(f"SOM {som_key}")
ax.set_xticks(range(activation_map.shape[1]))
ax.set_yticks(range(activation_map.shape[0]))
ax.grid(True, linestyle='-', linewidth=0.5)
plt.tight_layout()
return fig