cabasus / app.py
arcan3's picture
added new revs
4dedd5b
import os
import csv
import uuid
import json
import torch
import requests
import numpy as np
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
from phate import PHATEAE
from funcs.som import ClusterSOM
from funcs.tools import numpy_to_native
from funcs.processor import process_data
from funcs.plot_func import plot_sensor_data_from_json
from funcs.dataloader import BaseDataset2, read_json_files
DEVICE = torch.device("cpu")
reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
reducer10d.load('models/r10d_3.pth')
cluster_som = ClusterSOM()
cluster_som.load("models/cluster_som3.pkl")
def score(self, data, midpoints=None, threshold_radius=4):
"""
Compute the score for each sample in the data based on the distance of the BMU node to the closest midpoint of the SOM grid.
:param data: The input data.
:param midpoints: A dictionary with keys as the indices of the SOMs and values as lists of midpoints on the grid for the corresponding SOMs.
:param threshold_radius: The threshold radius for score calculation.
"""
scores = []
for sample in data:
# Predict the cluster and BMU SOM coordinate for each sample in the data
result = self.predict([sample])[0]
# Check if it is not a noise
if result[0] != -1:
# The activated SOM's index and its corresponding BMU
activated_som_index, bmu = result[0], result[1]
# Get the corresponding SOM for the data point
som = self.som_models[activated_som_index]
# If specific midpoints are provided for SOMs, use them; else compute the midpoint of the SOM grid
if midpoints is not None and activated_som_index in midpoints:
specified_midpoints = midpoints[activated_som_index]
else:
specified_midpoints = [tuple((dim-1)/2 for dim in som.get_weights().shape[:2])]
# Compute the grid distances from the BMU to each midpoint and find the minimum distance
min_distance = min(np.sqrt((midpoint[0] - bmu[0])*2 + (midpoint[1] - bmu[1])*2) for midpoint in specified_midpoints)
# Compute the score as the minimum grid distance minus the threshold radius
score = min_distance - threshold_radius
scores.append(score)
else:
scores.append(None) # Noise
return scores
def map_som2animation(som_value):
mapping = {
2: 0, # walk
1: 1, # trot
3: 2, # gallop
5: 3, # idle
4: 3, # other
-1:3, #other
}
return mapping.get(som_value, None)
def deviation_scores(tensor_data, scale=50):
if len(tensor_data) < 5:
raise ValueError("The input tensor must have at least 5 elements.")
# Extract the side values and reference value from the input tensor
side_values = tensor_data[-5:-1].numpy()
reference_value = tensor_data[-1].item()
# Calculate the absolute differences between the side values and the reference
absolute_differences = np.abs(side_values - reference_value)
# Check for zero division
if np.sum(absolute_differences) == 0:
# All side values are equal to the reference, so their deviation scores are 0
return int(reference_value/20*32768), [0, 0, 0, 0]
# Calculate the deviation scores for each side value
scores = absolute_differences * scale
# Clip the scores between 0 and 1
clipped_scores = np.clip(scores, 0, 1)
return int(reference_value/20*32768), clipped_scores.tolist()
def process_som_data(data, prediction):
processed_data = []
for i in range(0, len(data)):
TS, scores_list = deviation_scores(data[i][0])
# If TS is missing (None), interpolate it using surrounding values
if TS is None:
if i > 0 and i < len(data) - 1:
prev_TS = processed_data[-1][1]
next_TS = deviation_scores(data[i + 1][0])[0]
TS = (prev_TS + next_TS) // 2
elif i > 0:
TS = processed_data[-1][1] # Use the previous TS value
else:
TS = 0 # Default to 0 if no surrounding values are available
# Set Gait, State, and Condition
#0-walk 1-trot 2-gallop 3-idle
gait = map_som2animation(prediction[0][0])
state = 0
condition = 0
# Calculate Shape, Color, and Danger values
shape_values = scores_list
color_values = scores_list
danger_values = [1 if score == 1 else 0 for score in scores_list]
# Create a row with the required format
row = [gait, TS, state, condition] + shape_values + color_values + danger_values
processed_data.append(row)
return processed_data
def scores_to_dataframe(scores, start_time='2022-07-01 09:15:00+05:30', start_score=100, none_replacement=-0):
# Create a timestamp for every score in the list
timestamps = [pd.Timestamp(start_time) + pd.Timedelta(seconds=i) for i in range(len(scores))]
# Convert timestamps to unix timestamps
unix_timestamps = [int(ts.value // 10**9) for ts in timestamps]
# Initialize open prices list
open_prices = [start_score]
# Calculate open and close prices
for i in range(1, len(scores)):
if scores[i-1] is not None:
open_prices.append(open_prices[i-1] + scores[i-1])
else:
open_prices.append(open_prices[i-1])
close_prices = [open + (score if score is not None else none_replacement) for open, score in zip(open_prices, scores)]
# Create high and low prices
high_prices = [max(open, close) for open, close in zip(open_prices, close_prices)]
low_prices = [min(open, close) for open, close in zip(open_prices, close_prices)]
# Create a dataframe
df = pd.DataFrame({
'time': unix_timestamps,
'open': open_prices,
'high': high_prices,
'low': low_prices,
'close': close_prices
})
# Start index from 1
df.index += 1
return df
def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_slider, reducer=reducer10d, cluster=cluster_som):
processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, time_list = process_data(csv_file_box,
slice_size_slider,
sample_rate,
window_size_slider)
print('finished processing')
try:
if json_file_box is None:
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, None, None, None
train_x, train_y = read_json_files(json_file_box)
except:
if json_file_box.name is None:
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, None, None, None
train_x, train_y = read_json_files(json_file_box.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
# retrieve the prediction and get the animation
prediction = cluster_som.predict(embedding10d)
processed_data = process_som_data(data,prediction)
scores = cluster_som.score(embedding10d, threshold_radius=8.5)
scores_df = scores_to_dataframe(scores)
fig = go.Figure(data=[go.Candlestick(x=scores_df['time'],
open=scores_df['open'],
high=scores_df['high'],
low=scores_df['low'],
close=scores_df['close'])])
# Write the processed data to a CSV file
header = ['Gait', 'TS', 'State', 'Condition',
'Shape1', 'Shape2', 'Shape3', 'Shape4',
'Color1', 'Color2', 'Color3', 'Color4',
'Danger1', 'Danger2', 'Danger3', 'Danger4']
with open('animation_table.csv', 'w', newline='') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow(header)
csv_writer.writerows(processed_data)
uuid_name = f'{str(uuid.uuid4())}'
name_animation_file = f'animation-{uuid_name}.mp4'
name_som_sequence_file = f'sequence-{uuid_name}.mp4'
os.system(f'curl -X POST -F "csv_file=@animation_table.csv" https://metric-space.ngrok.io/generate --output {name_animation_file}')
# #with hhtp requests
# url = "https://metric-space.ngrok.io/generate"
# file = {'csv_file': open('animation_table.csv', 'rb')}
# response = requests.post(url, files=file)
# # The response will contain the binary data of the MP4 file. You can write it to a file like this:
# with open('animation.mp4', 'wb') as f:
# f.write(response.content)
# prediction = cluster_som.predict(embedding10d)
# passing the time values for each slice
som_video = cluster.plot_activation(embedding10d, times=time_list)
som_video.write_videofile(name_som_sequence_file)
# return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, som_video, 'animation.mp4', fig
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, name_som_sequence_file, name_animation_file, fig
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', None
# ml inference
def get_som_mp4(file, slice_select, reducer=reducer10d, cluster=cluster_som):
try:
train_x, train_y = read_json_files(file)
except:
train_x, train_y = read_json_files(file.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
fig = cluster.plot_activation_v2(embedding10d, slice_select)
return fig
def attach_label_to_json(json_file, label_text):
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
slices['label'] = label_text
with open(f'manual_labelled_{os.path.basename(json_file.name)}', "w") as f:
json.dump(numpy_to_native(slices), f, indent=2)
return f'manual_labelled_{os.path.basename(json_file.name)}'
with gr.Blocks(title='Cabasus') as cabasus_sensor:
title = gr.Markdown("<h2><center>Data gathering and processing</center></h2>")
with gr.Tab("Convert"):
with gr.Row():
csv_file_box = gr.File(label='Upload CSV File')
with gr.Column():
processed_file_box = gr.File(label='Processed CSV File')
json_file_box = gr.File(label='Generated Json file')
with gr.Row():
animation = gr.Video(label='animation')
activation_video = gr.Video(label='activation channels')
with gr.Row():
real_video = gr.Video(label='real video')
trend_graph = gr.Plot(label='trend graph')
plot_box_leg = gr.Plot(label="Filtered Signal Plot")
slice_slider = gr.Slider(minimum=1, maximum=300, label='Slice select', step=1)
som_create = gr.Button('generate activation maps')
som_figures = gr.Plot(label="activations maps")
with gr.Row():
slice_size_slider = gr.Slider(minimum=16, maximum=512, step=1, value=64, label="Slice Size", visible=False)
sample_rate = gr.Slider(minimum=1, maximum=199, step=1, value=20, label="Sample rate", visible=False)
with gr.Row():
window_size_slider = gr.Slider(minimum=0, maximum=100, step=2, value=10, label="Window Size", visible=False)
repeat_process = gr.Button('Restart process', visible=False)
with gr.Row():
leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
with gr.Row():
get_all_slice = gr.Plot(label="Real Signal Plot")
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
with gr.Row():
plot_slice_leg = gr.Plot(label="Sliced Signal Plot", visible=False)
with gr.Row():
slice_json_box = gr.File(label='Slice json file')
with gr.Column():
label_name = gr.Textbox(label="enter the label name")
button_label_Add = gr.Button('attach label')
slice_json_label_box = gr.File(label='Slice json labelled file')
slices_per_leg = gr.Textbox(label="Debug information")
# csv_file_box.change(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
# outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box])
leg_dropdown.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice, slice_json_box, plot_box_overlay])
repeat_process.click(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box])
slice_slider.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice, slice_json_box, plot_box_overlay])
som_create.click(get_som_mp4, inputs=[json_file_box, slice_slider], outputs=[som_figures])
#redoing the whole calculation with the file loading
csv_file_box.change(get_som_mp4_v2, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box,
activation_video, animation, trend_graph])
button_label_Add.click(attach_label_to_json, inputs=[slice_json_box, label_name], outputs=[slice_json_label_box])
cabasus_sensor.queue(concurrency_count=2).launch(debug=True)