Spaces:
Build error
Build error
File size: 15,944 Bytes
f9e67d5 e44d65b f9e67d5 247dc37 bafccae f9e67d5 7d492c9 a5bd089 8d14b4d a5bd089 247dc37 611742b 247dc37 a5bd089 247dc37 bafccae 247dc37 bafccae 247dc37 b37ce89 f9e67d5 7a69981 f9e67d5 7d492c9 d77c82e fa2a5c2 27ebbbd 7cd7e7f 247dc37 7a69981 4dedd5b d77c82e 247dc37 7a69981 4dedd5b d77c82e 247dc37 f9e67d5 7d492c9 8d14b4d f9e67d5 7d492c9 f9e67d5 5374205 dcbbb6c 27ebbbd f9e67d5 d77c82e fa2a5c2 5374205 fa2a5c2 7a69981 5374205 7a69981 d77c82e 247dc37 0231841 a5bd089 611742b a5bd089 247dc37 46fcc2f d77c82e 7a69981 7d492c9 d77c82e 73e4be8 d377ed0 8894eb2 73e4be8 a5bd089 247dc37 63e4f49 247dc37 d377ed0 a5bd089 5124a31 a5bd089 73e4be8 a5bd089 46fcc2f 73e4be8 d377ed0 46fcc2f 611742b d77c82e 46fcc2f 7a91765 03507e5 d77c82e 247dc37 df766c6 247dc37 611742b 247dc37 df766c6 247dc37 0231841 d77c82e 7d492c9 d77c82e 611742b a5bd089 03507e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import os
import csv
import uuid
import json
import torch
import requests
import numpy as np
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
from phate import PHATEAE
from funcs.som import ClusterSOM
from funcs.tools import numpy_to_native
from funcs.processor import process_data
from funcs.plot_func import plot_sensor_data_from_json
from funcs.dataloader import BaseDataset2, read_json_files
DEVICE = torch.device("cpu")
reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
reducer10d.load('models/r10d_3.pth')
cluster_som = ClusterSOM()
cluster_som.load("models/cluster_som3.pkl")
def score(self, data, midpoints=None, threshold_radius=4):
"""
Compute the score for each sample in the data based on the distance of the BMU node to the closest midpoint of the SOM grid.
:param data: The input data.
:param midpoints: A dictionary with keys as the indices of the SOMs and values as lists of midpoints on the grid for the corresponding SOMs.
:param threshold_radius: The threshold radius for score calculation.
"""
scores = []
for sample in data:
# Predict the cluster and BMU SOM coordinate for each sample in the data
result = self.predict([sample])[0]
# Check if it is not a noise
if result[0] != -1:
# The activated SOM's index and its corresponding BMU
activated_som_index, bmu = result[0], result[1]
# Get the corresponding SOM for the data point
som = self.som_models[activated_som_index]
# If specific midpoints are provided for SOMs, use them; else compute the midpoint of the SOM grid
if midpoints is not None and activated_som_index in midpoints:
specified_midpoints = midpoints[activated_som_index]
else:
specified_midpoints = [tuple((dim-1)/2 for dim in som.get_weights().shape[:2])]
# Compute the grid distances from the BMU to each midpoint and find the minimum distance
min_distance = min(np.sqrt((midpoint[0] - bmu[0])*2 + (midpoint[1] - bmu[1])*2) for midpoint in specified_midpoints)
# Compute the score as the minimum grid distance minus the threshold radius
score = min_distance - threshold_radius
scores.append(score)
else:
scores.append(None) # Noise
return scores
def map_som2animation(som_value):
mapping = {
2: 0, # walk
1: 1, # trot
3: 2, # gallop
5: 3, # idle
4: 3, # other
-1:3, #other
}
return mapping.get(som_value, None)
def deviation_scores(tensor_data, scale=50):
if len(tensor_data) < 5:
raise ValueError("The input tensor must have at least 5 elements.")
# Extract the side values and reference value from the input tensor
side_values = tensor_data[-5:-1].numpy()
reference_value = tensor_data[-1].item()
# Calculate the absolute differences between the side values and the reference
absolute_differences = np.abs(side_values - reference_value)
# Check for zero division
if np.sum(absolute_differences) == 0:
# All side values are equal to the reference, so their deviation scores are 0
return int(reference_value/20*32768), [0, 0, 0, 0]
# Calculate the deviation scores for each side value
scores = absolute_differences * scale
# Clip the scores between 0 and 1
clipped_scores = np.clip(scores, 0, 1)
return int(reference_value/20*32768), clipped_scores.tolist()
def process_som_data(data, prediction):
processed_data = []
for i in range(0, len(data)):
TS, scores_list = deviation_scores(data[i][0])
# If TS is missing (None), interpolate it using surrounding values
if TS is None:
if i > 0 and i < len(data) - 1:
prev_TS = processed_data[-1][1]
next_TS = deviation_scores(data[i + 1][0])[0]
TS = (prev_TS + next_TS) // 2
elif i > 0:
TS = processed_data[-1][1] # Use the previous TS value
else:
TS = 0 # Default to 0 if no surrounding values are available
# Set Gait, State, and Condition
#0-walk 1-trot 2-gallop 3-idle
gait = map_som2animation(prediction[0][0])
state = 0
condition = 0
# Calculate Shape, Color, and Danger values
shape_values = scores_list
color_values = scores_list
danger_values = [1 if score == 1 else 0 for score in scores_list]
# Create a row with the required format
row = [gait, TS, state, condition] + shape_values + color_values + danger_values
processed_data.append(row)
return processed_data
def scores_to_dataframe(scores, start_time='2022-07-01 09:15:00+05:30', start_score=100, none_replacement=-0):
# Create a timestamp for every score in the list
timestamps = [pd.Timestamp(start_time) + pd.Timedelta(seconds=i) for i in range(len(scores))]
# Convert timestamps to unix timestamps
unix_timestamps = [int(ts.value // 10**9) for ts in timestamps]
# Initialize open prices list
open_prices = [start_score]
# Calculate open and close prices
for i in range(1, len(scores)):
if scores[i-1] is not None:
open_prices.append(open_prices[i-1] + scores[i-1])
else:
open_prices.append(open_prices[i-1])
close_prices = [open + (score if score is not None else none_replacement) for open, score in zip(open_prices, scores)]
# Create high and low prices
high_prices = [max(open, close) for open, close in zip(open_prices, close_prices)]
low_prices = [min(open, close) for open, close in zip(open_prices, close_prices)]
# Create a dataframe
df = pd.DataFrame({
'time': unix_timestamps,
'open': open_prices,
'high': high_prices,
'low': low_prices,
'close': close_prices
})
# Start index from 1
df.index += 1
return df
def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_slider, reducer=reducer10d, cluster=cluster_som):
processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, time_list = process_data(csv_file_box,
slice_size_slider,
sample_rate,
window_size_slider)
print('finished processing')
try:
if json_file_box is None:
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, None, None, None
train_x, train_y = read_json_files(json_file_box)
except:
if json_file_box.name is None:
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, None, None, None
train_x, train_y = read_json_files(json_file_box.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
# retrieve the prediction and get the animation
prediction = cluster_som.predict(embedding10d)
processed_data = process_som_data(data,prediction)
scores = cluster_som.score(embedding10d, threshold_radius=8.5)
scores_df = scores_to_dataframe(scores)
fig = go.Figure(data=[go.Candlestick(x=scores_df['time'],
open=scores_df['open'],
high=scores_df['high'],
low=scores_df['low'],
close=scores_df['close'])])
# Write the processed data to a CSV file
header = ['Gait', 'TS', 'State', 'Condition',
'Shape1', 'Shape2', 'Shape3', 'Shape4',
'Color1', 'Color2', 'Color3', 'Color4',
'Danger1', 'Danger2', 'Danger3', 'Danger4']
with open('animation_table.csv', 'w', newline='') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow(header)
csv_writer.writerows(processed_data)
uuid_name = f'{str(uuid.uuid4())}'
name_animation_file = f'animation-{uuid_name}.mp4'
name_som_sequence_file = f'sequence-{uuid_name}.mp4'
os.system(f'curl -X POST -F "csv_file=@animation_table.csv" https://metric-space.ngrok.io/generate --output {name_animation_file}')
# #with hhtp requests
# url = "https://metric-space.ngrok.io/generate"
# file = {'csv_file': open('animation_table.csv', 'rb')}
# response = requests.post(url, files=file)
# # The response will contain the binary data of the MP4 file. You can write it to a file like this:
# with open('animation.mp4', 'wb') as f:
# f.write(response.content)
# prediction = cluster_som.predict(embedding10d)
# passing the time values for each slice
som_video = cluster.plot_activation(embedding10d, times=time_list)
som_video.write_videofile(name_som_sequence_file)
# return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, som_video, 'animation.mp4', fig
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, name_som_sequence_file, name_animation_file, fig
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', None
# ml inference
def get_som_mp4(file, slice_select, reducer=reducer10d, cluster=cluster_som):
try:
train_x, train_y = read_json_files(file)
except:
train_x, train_y = read_json_files(file.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
fig = cluster.plot_activation_v2(embedding10d, slice_select)
return fig
def attach_label_to_json(json_file, label_text):
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
slices['label'] = label_text
with open(f'manual_labelled_{os.path.basename(json_file.name)}', "w") as f:
json.dump(numpy_to_native(slices), f, indent=2)
return f'manual_labelled_{os.path.basename(json_file.name)}'
with gr.Blocks(title='Cabasus') as cabasus_sensor:
title = gr.Markdown("<h2><center>Data gathering and processing</center></h2>")
with gr.Tab("Convert"):
with gr.Row():
csv_file_box = gr.File(label='Upload CSV File')
with gr.Column():
processed_file_box = gr.File(label='Processed CSV File')
json_file_box = gr.File(label='Generated Json file')
with gr.Row():
animation = gr.Video(label='animation')
activation_video = gr.Video(label='activation channels')
with gr.Row():
real_video = gr.Video(label='real video')
trend_graph = gr.Plot(label='trend graph')
plot_box_leg = gr.Plot(label="Filtered Signal Plot")
slice_slider = gr.Slider(minimum=1, maximum=300, label='Slice select', step=1)
som_create = gr.Button('generate activation maps')
som_figures = gr.Plot(label="activations maps")
with gr.Row():
slice_size_slider = gr.Slider(minimum=16, maximum=512, step=1, value=64, label="Slice Size", visible=False)
sample_rate = gr.Slider(minimum=1, maximum=199, step=1, value=20, label="Sample rate", visible=False)
with gr.Row():
window_size_slider = gr.Slider(minimum=0, maximum=100, step=2, value=10, label="Window Size", visible=False)
repeat_process = gr.Button('Restart process', visible=False)
with gr.Row():
leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
with gr.Row():
get_all_slice = gr.Plot(label="Real Signal Plot")
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
with gr.Row():
plot_slice_leg = gr.Plot(label="Sliced Signal Plot", visible=False)
with gr.Row():
slice_json_box = gr.File(label='Slice json file')
with gr.Column():
label_name = gr.Textbox(label="enter the label name")
button_label_Add = gr.Button('attach label')
slice_json_label_box = gr.File(label='Slice json labelled file')
slices_per_leg = gr.Textbox(label="Debug information")
# csv_file_box.change(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
# outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box])
leg_dropdown.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice, slice_json_box, plot_box_overlay])
repeat_process.click(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box])
slice_slider.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice, slice_json_box, plot_box_overlay])
som_create.click(get_som_mp4, inputs=[json_file_box, slice_slider], outputs=[som_figures])
#redoing the whole calculation with the file loading
csv_file_box.change(get_som_mp4_v2, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box,
activation_video, animation, trend_graph])
button_label_Add.click(attach_label_to_json, inputs=[slice_json_box, label_name], outputs=[slice_json_label_box])
cabasus_sensor.queue(concurrency_count=2).launch(debug=True)
|