cabasus / funcs /plot_func.py
arcan3's picture
som name changed, placeholder added, new models added
7a69981
import json
import matplotlib
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from funcs.tools import numpy_to_native
matplotlib.use('Agg')
plt.style.use('ggplot')
def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
# Concatenate the slices and create a new timestamp series with 20ms intervals
timestamps = []
sensor_data = []
slice_item = []
temp_end = 0
for slice_count, slice_dict in enumerate(slices):
start_timestamp = slice_dict["timestamp"]
slice_length = len(slice_dict[sensor])
slice_timestamps = [start_timestamp + 20 * i for i in range(temp_end, slice_length + temp_end)]
timestamps.extend(slice_timestamps)
sensor_data.extend(slice_dict[sensor])
temp_end += slice_length
slice_item.extend([slice_count+1]*len(slice_timestamps))
# Create a DataFrame with the sensor data
data = pd.DataFrame({sensor: sensor_data, 'slice selection': slice_item, 'time': timestamps})
# Plot the sensor data
fig, ax = plt.subplots(figsize=(12, 6))
ax = plt.plot(data['time'].to_list(), data[sensor].to_list(), '-b')
df_temp = data[data['slice selection'] == int(slice_select)].reset_index()
ax = plt.plot(df_temp['time'].to_list(), df_temp[sensor].to_list(), '-r')
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
fig1, ax1 = plt.subplots(figsize=(12, 6))
ax1 = plt.plot(df_temp['time'].to_list(), df_temp[sensor].to_list())
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
fig2, file = plot_other_sensor_with_same_timestamp(json_file, sensor, slice_select)
fig3 = plot_overlay_data_from_json(json_file, slice_select=slice_select)
return fig, fig1, fig2, file, fig3
def plot_overlay_data_from_json(json_file, slice_select, sensors=['GZ1', 'GZ2', 'GZ3', 'GZ4']):
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
# Create subplots for each sensor
fig, axs = plt.subplots(len(sensors), 1, figsize=(12, 2 * len(sensors)), sharex=True)
for idx, sensor in enumerate(sensors):
# Plot the overlay of the slices
for slice_idx, slice_dict in enumerate(slices):
slice_length = len(slice_dict[sensor])
# Create timestamp array starting from 0 for each slice
slice_timestamps = [20 * i for i in range(slice_length)]
sensor_data = slice_dict[sensor]
data = pd.DataFrame({sensor: sensor_data}, index=slice_timestamps)
if slice_idx+1 == slice_select:
axs[idx].plot(data[sensor], '-r', label=f'Slice {slice_idx + 1}')
else:
axs[idx].plot(data[sensor], '-c')
axs[idx].set_ylabel(sensor)
axs[-1].set_xlabel("Timestamp")
axs[0].legend()
return fig
def plot_slices(original_signal, imputed_signal, precise_slice_points, normal_slice_points, sample_rate, first_timestamp):
plt.figure(figsize=(12, 6))
plt.plot(imputed_signal.index, imputed_signal, label="Imputed Signal")
# Find the missing values and the predicted values
missing_value_indices = original_signal.isna()
missing_values = original_signal.loc[missing_value_indices]
predicted_values = imputed_signal.loc[missing_value_indices]
# Plot the original missing values and the predicted values as separate scatter plots
plt.scatter(missing_values.index, missing_values, color='r', marker='x', label='Original Missing Values')
plt.scatter(predicted_values.index, predicted_values, color='r', marker='o', label='Predicted Values')
for index in precise_slice_points:
plt.axvline(x=first_timestamp + (index), color='r', linestyle='--', label='Precise Slice Points' if index == precise_slice_points[0] else "")
for index in normal_slice_points:
plt.axvline(x=first_timestamp + (index), color='g', linestyle='-', label='Normal Slice Points' if index == normal_slice_points[0] else "")
plt.legend()
plt.xlabel("Time (s)")
plt.ylabel("Signal Amplitude")
plt.title("Imputed Signal and Slice Points")
return True
def plot_other_sensor_with_same_timestamp(json_file, sensor, slice_select):
constant_keys = [f"{sensor}_precise_time_diff", "precise_timestamp",
'timestamp', "time_diff", "precise_time_diff"]
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
# Concatenate the slices and create a new timestamp series with 20ms intervals
timestamps = []
sensor_data = []
slice_item = []
slice_recorded = []
for slice_count, slice_dict in enumerate(slices):
if slice_count+1 == slice_select:
start_timestamp = slice_dict["timestamp"]
for slist in slice_dict.keys():
if slist[-1] != sensor[-1]:
continue
slice_recorded.append(slist)
slice_length = len(slice_dict[slist])
slice_timestamps = [start_timestamp + 20 * i for i in range(slice_length)]
timestamps.extend(slice_timestamps)
sensor_data.extend(slice_dict[slist])
slice_item.extend([slist]*len(slice_timestamps))
# Create a DataFrame with the sensor data
data = pd.DataFrame({'data': sensor_data, 'sensor': slice_item, 'time': timestamps})
sensor_unique = sorted(list(data.sensor.unique()), reverse=True)
fig, ax = plt.subplots(figsize=(12, 6))
ax = sns.lineplot(data, x='time', y='data', hue='sensor', hue_order=sensor_unique)
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
#create a new dictionary
total_keys = slice_recorded + constant_keys
json_dict = {}
for tkeys in total_keys:
json_dict[tkeys] = slice_dict[tkeys]
with open(f'slice_{slice_select}.json', "w") as f:
json.dump(numpy_to_native(json_dict), f, indent=2)
return fig, f'slice_{slice_select}.json'