Spaces:
Build error
Build error
File size: 6,505 Bytes
a5bd089 46fcc2f a5bd089 29afbe3 a5bd089 611742b 247dc37 a5bd089 46fcc2f a5bd089 03507e5 a5bd089 46fcc2f a5bd089 46fcc2f a5bd089 46fcc2f a5bd089 46fcc2f a5bd089 715f3b0 a5bd089 46fcc2f b5cac07 46fcc2f a5bd089 46fcc2f a5bd089 611742b df766c6 611742b df766c6 a5bd089 df766c6 ab8c05f a5bd089 df766c6 a5bd089 29afbe3 611742b 29afbe3 611742b 29afbe3 611742b 29afbe3 715f3b0 29afbe3 715f3b0 29afbe3 611742b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import json
import matplotlib
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from funcs.tools import numpy_to_native
matplotlib.use('Agg')
plt.style.use('ggplot')
def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
# Concatenate the slices and create a new timestamp series with 20ms intervals
timestamps = []
sensor_data = []
slice_item = []
temp_end = 0
for slice_count, slice_dict in enumerate(slices):
start_timestamp = slice_dict["timestamp"]
slice_length = len(slice_dict[sensor])
slice_timestamps = [start_timestamp + 20 * i for i in range(temp_end, slice_length + temp_end)]
timestamps.extend(slice_timestamps)
sensor_data.extend(slice_dict[sensor])
temp_end += slice_length
slice_item.extend([slice_count+1]*len(slice_timestamps))
# Create a DataFrame with the sensor data
data = pd.DataFrame({sensor: sensor_data, 'slice selection': slice_item, 'time': timestamps})
# Plot the sensor data
fig, ax = plt.subplots(figsize=(12, 6))
ax = plt.plot(data['time'].to_list(), data[sensor].to_list(), '-b')
df_temp = data[data['slice selection'] == int(slice_select)].reset_index()
ax = plt.plot(df_temp['time'].to_list(), df_temp[sensor].to_list(), '-r')
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
fig1, ax1 = plt.subplots(figsize=(12, 6))
ax1 = plt.plot(df_temp['time'].to_list(), df_temp[sensor].to_list())
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
fig2, file = plot_other_sensor_with_same_timestamp(json_file, sensor, slice_select)
fig3 = plot_overlay_data_from_json(json_file, slice_select=slice_select)
return fig, fig1, fig2, file, fig3
def plot_overlay_data_from_json(json_file, slice_select, sensors=['GZ1', 'GZ2', 'GZ3', 'GZ4']):
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
# Create subplots for each sensor
fig, axs = plt.subplots(len(sensors), 1, figsize=(12, 2 * len(sensors)), sharex=True)
for idx, sensor in enumerate(sensors):
# Plot the overlay of the slices
for slice_idx, slice_dict in enumerate(slices):
slice_length = len(slice_dict[sensor])
# Create timestamp array starting from 0 for each slice
slice_timestamps = [20 * i for i in range(slice_length)]
sensor_data = slice_dict[sensor]
data = pd.DataFrame({sensor: sensor_data}, index=slice_timestamps)
if slice_idx+1 == slice_select:
axs[idx].plot(data[sensor], '-r', label=f'Slice {slice_idx + 1}')
else:
axs[idx].plot(data[sensor], '-c')
axs[idx].set_ylabel(sensor)
axs[-1].set_xlabel("Timestamp")
axs[0].legend()
return fig
def plot_slices(original_signal, imputed_signal, precise_slice_points, normal_slice_points, sample_rate, first_timestamp):
plt.figure(figsize=(12, 6))
plt.plot(imputed_signal.index, imputed_signal, label="Imputed Signal")
# Find the missing values and the predicted values
missing_value_indices = original_signal.isna()
missing_values = original_signal.loc[missing_value_indices]
predicted_values = imputed_signal.loc[missing_value_indices]
# Plot the original missing values and the predicted values as separate scatter plots
plt.scatter(missing_values.index, missing_values, color='r', marker='x', label='Original Missing Values')
plt.scatter(predicted_values.index, predicted_values, color='r', marker='o', label='Predicted Values')
for index in precise_slice_points:
plt.axvline(x=first_timestamp + (index), color='r', linestyle='--', label='Precise Slice Points' if index == precise_slice_points[0] else "")
for index in normal_slice_points:
plt.axvline(x=first_timestamp + (index), color='g', linestyle='-', label='Normal Slice Points' if index == normal_slice_points[0] else "")
plt.legend()
plt.xlabel("Time (s)")
plt.ylabel("Signal Amplitude")
plt.title("Imputed Signal and Slice Points")
return True
def plot_other_sensor_with_same_timestamp(json_file, sensor, slice_select):
constant_keys = [f"{sensor}_precise_time_diff", "precise_timestamp",
'timestamp', "time_diff", "precise_time_diff"]
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
# Concatenate the slices and create a new timestamp series with 20ms intervals
timestamps = []
sensor_data = []
slice_item = []
slice_recorded = []
for slice_count, slice_dict in enumerate(slices):
if slice_count+1 == slice_select:
start_timestamp = slice_dict["timestamp"]
for slist in slice_dict.keys():
if slist[-1] != sensor[-1]:
continue
slice_recorded.append(slist)
slice_length = len(slice_dict[slist])
slice_timestamps = [start_timestamp + 20 * i for i in range(slice_length)]
timestamps.extend(slice_timestamps)
sensor_data.extend(slice_dict[slist])
slice_item.extend([slist]*len(slice_timestamps))
# Create a DataFrame with the sensor data
data = pd.DataFrame({'data': sensor_data, 'sensor': slice_item, 'time': timestamps})
sensor_unique = sorted(list(data.sensor.unique()), reverse=True)
fig, ax = plt.subplots(figsize=(12, 6))
ax = sns.lineplot(data, x='time', y='data', hue='sensor', hue_order=sensor_unique)
plt.xlabel("Timestamp")
plt.ylabel(sensor)
plt.legend()
plt.tight_layout()
#create a new dictionary
total_keys = slice_recorded + constant_keys
json_dict = {}
for tkeys in total_keys:
json_dict[tkeys] = slice_dict[tkeys]
with open(f'slice_{slice_select}.json', "w") as f:
json.dump(numpy_to_native(json_dict), f, indent=2)
return fig, f'slice_{slice_select}.json' |