File size: 45,387 Bytes
43a7079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
import json

import torch
import transformers
from transformers.cache_utils import *
from transformers.models.llama.modeling_llama import *

from .modules.inf_llm import InfLLMGenerator, inf_llm_forward
from .modules.minference_forward import (
    gather_last_q_vertical_slash_topk_v4,
    gather_last_q_vertical_slash_topk_vllm,
    init_minference_parameters,
    minference_forward,
    minference_kv_cache_cpu_forward,
    minference_vllm_forward,
    minference_with_snapkv_forward,
    search_pattern,
    sum_all_diagonal_matrix,
)
from .ops.streaming_kernel import stream_llm_forward


class RotaryEmbeddingESM(torch.nn.Module):
    """
    Rotary position embeddings based on those in
    [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
    matrices which depend on their relative positions.
    """

    def __init__(
        self,
        dim: int,
        base: Union[int, float] = 10000,
        distance_scale: Union[int, float] = 1,
    ):
        super().__init__()
        self.base = base
        self.distance_scale = distance_scale

        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = 1.0 / (
            base ** (torch.arange(0, dim, 2, device="cuda", dtype=torch.float32) / dim)
        )
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        self._seq_len_cached = -1
        self._cos_cached = None
        self._sin_cached = None

    def rotate_half(self, x):
        x1, x2 = x.chunk(2, dim=-1)
        return torch.cat((-x2, x1), dim=-1)

    def apply_rotary_pos_emb(self, x, length, right, cos, sin):
        dtype = x.dtype
        if cos.dim() == 2:
            cos = cos[right - length : right, :]
            sin = sin[right - length : right, :]
        elif cos.dim() == 3:
            cos = cos[:, right - length : right, :]
            sin = sin[:, right - length : right, :]
        elif cos.dim() == 4:
            cos = cos[:, :, right - length : right, :]
            sin = sin[:, :, right - length : right, :]

        return ((x.float() * cos) + (self.rotate_half(x).float() * sin)).to(dtype)

    def _update_cos_sin_tables(self, x, seq_dim):
        seq_len = x.size(seq_dim)
        if seq_len > self._seq_len_cached:
            self._seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
            freqs = torch.outer(t * self.distance_scale, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1)
            if x.dim() == 2:
                self._cos_cached = emb.cos()
                self._sin_cached = emb.sin()
            elif x.dim() == 3:
                self._cos_cached = emb.cos()[None, :, :]
                self._sin_cached = emb.sin()[None, :, :]
            elif x.dim() == 4:
                self._cos_cached = emb.cos()[None, None, :, :]
                self._sin_cached = emb.sin()[None, None, :, :]
        return self._cos_cached, self._sin_cached

    def _update_cos_sin_tables_len(self, seq_len, device, dim=None):
        if seq_len > self._seq_len_cached:
            if dim is None:
                assert self._cos_cached is not None
                dim = self._cos_cached.dim()

            self._seq_len_cached = seq_len
            t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
            freqs = torch.outer(t * self.distance_scale, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1)
            if dim == 2:
                self._cos_cached = emb.cos()
                self._sin_cached = emb.sin()
            elif dim == 3:
                self._cos_cached = emb.cos()[None, :, :]
                self._sin_cached = emb.sin()[None, :, :]
            elif dim == 4:
                self._cos_cached = emb.cos()[None, None, :, :]
                self._sin_cached = emb.sin()[None, None, :, :]

        return self._cos_cached, self._sin_cached

    def apply_rotary_pos_emb_one_angle(self, x: torch.Tensor, index):
        dtype = x.dtype
        cos, sin = self._update_cos_sin_tables_len(index, x.device)
        if cos.dim() == 2:
            cos = cos[index - 1 : index, :]
            sin = sin[index - 1 : index, :]
        elif cos.dim() == 3:
            cos = cos[:, index - 1 : index, :]
            sin = sin[:, index - 1 : index, :]
        elif cos.dim() == 4:
            cos = cos[:, :, index - 1 : index, :]
            sin = sin[:, :, index - 1 : index, :]

        return ((x.float() * cos) + (self.rotate_half(x).float() * sin)).to(dtype)

    def forward(
        self, q: torch.Tensor, k: torch.Tensor, seq_dim=-2
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
            k, seq_dim=seq_dim
        )
        return (
            self.apply_rotary_pos_emb(
                q, q.size(seq_dim), k.size(seq_dim), self._cos_cached, self._sin_cached
            ),
            self.apply_rotary_pos_emb(
                k, k.size(seq_dim), k.size(seq_dim), self._cos_cached, self._sin_cached
            ),
        )


ATTN_FORWRAD = {
    "streaming": stream_llm_forward,
    "minference": minference_forward,
    "inf_llm": inf_llm_forward,
}


def huggingface_forward(forward):
    def hf_forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask=None,
        position_ids=None,
        past_key_value=None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ):
        assert not output_attentions
        ret = forward(
            self,
            hidden_states,
            hidden_states,
            position_ids,
            use_cache,
            past_key_value,
            self.q_proj,
            self.k_proj,
            self.v_proj,
            self.o_proj,
            self.head_dim,
            self.num_heads,
            self.num_key_value_heads,
        )
        if use_cache:
            o, pkv = ret
        else:
            o = ret
            pkv = None

        return o, None, pkv

    return hf_forward


def hf_437_prepare_inputs_for_generation(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    inputs_embeds=None,
    **kwargs,
):
    if past_key_values is not None:
        if isinstance(past_key_values, transformers.cache_utils.Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
            max_cache_length = past_key_values.get_max_length()
        else:
            cache_length = past_length = past_key_values[0][0].shape[2]
            max_cache_length = None

        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
        if (
            max_cache_length is not None
            and attention_mask is not None
            and cache_length + input_ids.shape[1] > max_cache_length
        ):
            attention_mask = attention_mask[:, -max_cache_length:]

    position_ids = kwargs.get("position_ids", None)
    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and past_key_values is None:
        model_inputs = {"inputs_embeds": inputs_embeds}
    else:
        model_inputs = {"input_ids": input_ids}

    model_inputs.update(
        {
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }
    )
    return model_inputs


def prepare_inputs_for_generation(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    inputs_embeds=None,
    cache_position=None,
    **kwargs,
):
    # With static cache, the `past_key_values` is None
    # TODO joao: standardize interface for the different Cache classes and remove of this if
    has_static_cache = False
    if past_key_values is None:
        past_key_values = getattr(
            getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None
        )
        has_static_cache = past_key_values is not None

    past_length = 0
    if past_key_values is not None:
        if isinstance(past_key_values, transformers.cache_utils.Cache):
            past_length = (
                cache_position[0]
                if cache_position is not None
                else past_key_values.get_seq_length()
            )
            max_cache_length = (
                torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                if past_key_values.get_max_length() is not None
                else None
            )
            cache_length = (
                past_length
                if max_cache_length is None
                else torch.min(max_cache_length, past_length)
            )
        # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
        else:
            # cache_length = past_length = past_key_values[0][0].shape[2]
            cache_length = past_length = cache_position[0]
            max_cache_length = None

        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
        if (
            max_cache_length is not None
            and attention_mask is not None
            and cache_length + input_ids.shape[1] > max_cache_length
        ):
            attention_mask = attention_mask[:, -max_cache_length:]

    position_ids = kwargs.get("position_ids", None)
    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and past_key_values is None:
        model_inputs = {"inputs_embeds": inputs_embeds}
    else:
        # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
        # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
        # TODO: use `next_tokens` directly instead.
        model_inputs = {"input_ids": input_ids.contiguous()}

    input_length = (
        position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
    )
    if cache_position is None:
        cache_position = torch.arange(
            past_length, past_length + input_length, device=input_ids.device
        )
    else:
        cache_position = cache_position[-input_length:]

    if has_static_cache:
        past_key_values = None

    model_inputs.update(
        {
            "position_ids": position_ids,
            "cache_position": cache_position,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }
    )
    return model_inputs


def prepare_inputs_for_generation_snapkv(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    inputs_embeds=None,
    **kwargs,
):
    if past_key_values is None:  # [SnapKV]
        for layer in self.model.layers:
            layer.self_attn.kv_seq_len = 0
    if past_key_values is not None:
        if isinstance(past_key_values, Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
            max_cache_length = past_key_values.get_max_length()
        else:
            # cache_length = past_length = past_key_values[0][0].shape[2]
            # max_cache_length = None
            cache_length = past_length = self.model.layers[0].self_attn.kv_seq_len
            max_cache_length = None
        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
        if (
            max_cache_length is not None
            and attention_mask is not None
            and cache_length + input_ids.shape[1] > max_cache_length
        ):
            attention_mask = attention_mask[:, -max_cache_length:]

    position_ids = kwargs.get("position_ids", None)
    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and past_key_values is None:
        model_inputs = {"inputs_embeds": inputs_embeds}
    else:
        model_inputs = {"input_ids": input_ids}

    model_inputs.update(
        {
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }
    )
    return model_inputs


def _prepare_decoder_attention_mask_inference(
    self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
    # [bsz, seq_len]
    if past_key_values_length > 0 and attention_mask is not None:
        attention_mask = torch.cat(
            (
                torch.full(
                    (input_shape[0], past_key_values_length),
                    True,
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                ),
                attention_mask,
            ),
            dim=-1,
        )

    if attention_mask is not None and torch.all(attention_mask):
        return None  # This uses the faster call when training with full samples

    return attention_mask


def forward_llama_decoder_layer(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: Optional[bool] = False,
    use_cache: Optional[bool] = False,
    padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
    """
    Args:
        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
        attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
            `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
            returned tensors for more detail.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
            (see `past_key_values`).
        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
    """

    residual = hidden_states.clone()
    batch, seq_len, embed_dim = hidden_states.shape

    for start_idx in range(0, seq_len, 32000):
        end_idx = min(seq_len, start_idx + 32000)
        hidden_states[:, start_idx:end_idx, :] = self.input_layernorm(
            hidden_states[:, start_idx:end_idx, :]
        )

    # Self Attention
    hidden_states, self_attn_weights, present_key_value = self.self_attn(
        hidden_states=hidden_states,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_value=past_key_value,
        output_attentions=output_attentions,
        use_cache=use_cache,
        padding_mask=padding_mask,
    )
    hidden_states = residual + hidden_states

    # Fully Connected
    for start_idx in range(0, seq_len, 32000):
        end_idx = min(seq_len, start_idx + 32000)
        part_hidden_states = hidden_states[:, start_idx:end_idx, :].clone()
        part_hidden_states = self.post_attention_layernorm(part_hidden_states)
        part_hidden_states = self.mlp(part_hidden_states)
        hidden_states[:, start_idx:end_idx, :] += part_hidden_states

    outputs = (hidden_states,)

    if output_attentions:
        outputs += (self_attn_weights,)

    if use_cache:
        outputs += (present_key_value,)

    return outputs


def forward_llama_model(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[List[torch.FloatTensor]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
    output_attentions = (
        output_attentions
        if output_attentions is not None
        else self.config.output_attentions
    )
    output_hidden_states = (
        output_hidden_states
        if output_hidden_states is not None
        else self.config.output_hidden_states
    )
    use_cache = use_cache if use_cache is not None else self.config.use_cache

    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    # retrieve input_ids and inputs_embeds
    if input_ids is not None and inputs_embeds is not None:
        raise ValueError(
            "You cannot specify both input_ids and inputs_embeds at the same time"
        )
    elif input_ids is not None:
        batch_size, seq_length = input_ids.shape[:2]
    elif inputs_embeds is not None:
        batch_size, seq_length = inputs_embeds.shape[:2]
    else:
        raise ValueError("You have to specify either input_ids or inputs_embeds")

    if self.gradient_checkpointing and self.training:
        if use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

    seq_length_with_past = seq_length
    past_key_values_length = 0

    if use_cache:
        use_legacy_cache = not isinstance(past_key_values, Cache)
        if use_legacy_cache:
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
        past_key_values_length = past_key_values.get_usable_length(seq_length)
        seq_length_with_past = seq_length_with_past + past_key_values_length

    if position_ids is None:
        device = input_ids.device if input_ids is not None else inputs_embeds.device
        position_ids = torch.arange(
            past_key_values_length,
            seq_length + past_key_values_length,
            dtype=torch.long,
            device=device,
        )
        position_ids = position_ids.unsqueeze(0)

    if inputs_embeds is None:
        inputs_embeds = self.embed_tokens(input_ids)

    if attention_mask is None:
        attention_mask = torch.ones(
            (batch_size, seq_length_with_past),
            dtype=torch.bool,
            device=inputs_embeds.device,
        )
        padding_mask = None
    else:
        if 0 in attention_mask:
            padding_mask = attention_mask
        else:
            padding_mask = None

    attention_mask = self._prepare_decoder_attention_mask(
        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
    )

    # embed positions
    hidden_states = inputs_embeds

    # decoder layers
    all_hidden_states = () if output_hidden_states else None
    all_self_attns = () if output_attentions else None
    next_decoder_cache = None

    for decoder_layer in self.layers:
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if self.gradient_checkpointing and self.training:
            layer_outputs = self._gradient_checkpointing_func(
                decoder_layer.__call__,
                hidden_states,
                attention_mask,
                position_ids,
                past_key_values,
                output_attentions,
                use_cache,
            )
        else:
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

        hidden_states = layer_outputs[0]

        if use_cache:
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]

        if output_attentions:
            all_self_attns += (layer_outputs[1],)

    batch, seq_len, embed_dim = hidden_states.shape
    for start_idx in range(0, seq_len, 32000):
        end_idx = min(seq_len, start_idx + 32000)
        hidden_states[:, start_idx:end_idx, :] = self.norm(
            hidden_states[:, start_idx:end_idx, :]
        )

    # add hidden states from the last decoder layer
    if output_hidden_states:
        all_hidden_states += (hidden_states,)

    next_cache = None
    if use_cache:
        next_cache = (
            next_decoder_cache.to_legacy_cache()
            if use_legacy_cache
            else next_decoder_cache
        )
    if not return_dict:
        return tuple(
            v
            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
            if v is not None
        )
    return BaseModelOutputWithPast(
        last_hidden_state=hidden_states,
        past_key_values=next_cache,
        hidden_states=all_hidden_states,
        attentions=all_self_attns,
    )


def forward_llama_for_causal_lm(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[List[torch.FloatTensor]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
    # assert labels is not None
    output_attentions = (
        output_attentions
        if output_attentions is not None
        else self.config.output_attentions
    )
    output_hidden_states = (
        output_hidden_states
        if output_hidden_states is not None
        else self.config.output_hidden_states
    )
    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
    outputs = self.model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    torch.cuda.empty_cache()

    hidden_states = outputs[0]
    if labels is not None:
        loss_fct = CrossEntropyLoss(reduction="sum")
        valid_seq_len = input_ids.shape[-1] - 1
        valid_seq_len_slide_win = torch.sum(labels[:, 1:] >= 0).item()
        # print("valid_seq_len_slide_win", valid_seq_len)
        loss = 0.0

        for start_idx in range(0, valid_seq_len, 32000):
            end_idx = min(start_idx + 32000, valid_seq_len)
            shift_logits = self.lm_head(
                hidden_states[..., start_idx:end_idx, :]
            ).float()
            shift_labels = labels[..., start_idx + 1 : end_idx + 1].contiguous()
            # Flatten the tokens
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss += loss_fct(shift_logits, shift_labels)

        loss /= valid_seq_len_slide_win
        logits = None
    else:
        if self.config.to_dict().get("is_ppl", False):
            logits = self.lm_head(hidden_states)
        else:
            logits = self.lm_head(hidden_states[:, -1:]).float()
        loss = None

    return CausalLMOutputWithPast(
        loss=loss,
        logits=logits,
        past_key_values=outputs.past_key_values,
    )


def minference_patch(model, config):
    from transformers import LlamaForCausalLM

    if config.kv_cache_cpu:
        return minference_patch_kv_cache_cpu(model)
    if config.use_snapkv:
        return minference_patch_with_snapkv(model)

    Attention = model.model.layers[0].self_attn.__class__
    Model = model.model.__class__
    DecoderLayer = model.model.layers[0].__class__

    forward = minference_forward()

    def update_module(m):
        if isinstance(m, Attention):
            m.init_minference_parameters = init_minference_parameters.__get__(
                m, Attention
            )
            m.gather_last_q_vertical_slash_topk_v4 = (
                gather_last_q_vertical_slash_topk_v4.__get__(m, Attention)
            )
            m.forward = forward.__get__(m, Attention)
        if isinstance(m, DecoderLayer):
            m.forward = forward_llama_decoder_layer.__get__(m, DecoderLayer)

    model.apply(update_module)
    model.prepare_inputs_for_generation = hf_437_prepare_inputs_for_generation.__get__(
        model, model.__class__
    )
    model.model._use_sdpa = False

    model.model._prepare_decoder_attention_mask = (
        _prepare_decoder_attention_mask_inference.__get__(
            model.model, model.model.__class__
        )
    )
    model.model.forward = forward_llama_model.__get__(
        model.model, model.model.__class__
    )
    model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)

    print("Patched model for minference..")
    return model


def minference_patch_kv_cache_cpu(model):
    from transformers import LlamaForCausalLM

    transformers.cache_utils.DynamicCache.update = cpu_cache_update
    transformers.cache_utils.DynamicCache.get = cpu_cache_get

    Attention = model.model.layers[0].self_attn.__class__
    Model = model.model.__class__
    DecoderLayer = model.model.layers[0].__class__

    forward = minference_kv_cache_cpu_forward()

    def update_module(m):
        if isinstance(m, Attention):
            m.init_minference_parameters = init_minference_parameters.__get__(
                m, Attention
            )
            m.gather_last_q_vertical_slash_topk_v4 = (
                gather_last_q_vertical_slash_topk_v4.__get__(m, Attention)
            )
            m.forward = forward.__get__(m, Attention)
        if isinstance(m, DecoderLayer):
            m.forward = forward_llama_decoder_layer.__get__(m, DecoderLayer)

    model.apply(update_module)
    model.prepare_inputs_for_generation = hf_437_prepare_inputs_for_generation.__get__(
        model, model.__class__
    )
    model.model._use_sdpa = False

    model.model._prepare_decoder_attention_mask = (
        _prepare_decoder_attention_mask_inference.__get__(
            model.model, model.model.__class__
        )
    )
    model.model.forward = forward_llama_model.__get__(
        model.model, model.model.__class__
    )
    model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)

    print("Patched model for MInference load KV Cache to CPU.")
    return model


def minference_patch_with_snapkv(model):
    from transformers import LlamaForCausalLM

    Attention = model.model.layers[0].self_attn.__class__
    Model = model.model.__class__
    DecoderLayer = model.model.layers[0].__class__

    forward = minference_with_snapkv_forward()

    def update_module(m):
        if isinstance(m, Attention):
            m.init_minference_parameters = init_minference_parameters.__get__(
                m, Attention
            )
            m.gather_last_q_vertical_slash_topk_v4 = (
                gather_last_q_vertical_slash_topk_v4.__get__(m, Attention)
            )
            m.forward = forward.__get__(m, Attention)
        if isinstance(m, DecoderLayer):
            m.forward = forward_llama_decoder_layer.__get__(m, DecoderLayer)

    model.apply(update_module)
    model.prepare_inputs_for_generation = prepare_inputs_for_generation_snapkv.__get__(
        model, model.__class__
    )
    model.model._use_sdpa = False

    model.model._prepare_decoder_attention_mask = (
        _prepare_decoder_attention_mask_inference.__get__(
            model.model, model.model.__class__
        )
    )
    model.model.forward = forward_llama_model.__get__(
        model.model, model.model.__class__
    )
    model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)

    print("Patched model for minference with SanpKV..")
    return model


def llama_model_forward_vllm(
    self,
    input_ids: Optional[torch.Tensor],
    positions: torch.Tensor,
    kv_caches: List[torch.Tensor],
    attn_metadata,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    if inputs_embeds is not None:
        hidden_states = inputs_embeds
    else:
        hidden_states = self.get_input_embeddings(input_ids)
    residual = None
    for i in range(len(self.layers)):
        layer = self.layers[i]
        hidden_states, residual = layer(
            positions,
            hidden_states,
            kv_caches[i],
            attn_metadata,
            residual,
            layer_idx=i,
        )
    hidden_states, _ = self.norm(hidden_states, residual)
    return hidden_states


def llama_layer_forward_vllm(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    kv_cache: torch.Tensor,
    attn_metadata,
    residual: Optional[torch.Tensor],
    layer_idx: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # Self Attention
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(hidden_states, residual)
    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
        kv_cache=kv_cache,
        attn_metadata=attn_metadata,
        layer_idx=layer_idx,
    )

    # Fully Connected
    hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
    hidden_states = self.mlp(hidden_states)
    return hidden_states, residual


def llama_attn_forward_vllm(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    kv_cache: torch.Tensor,
    attn_metadata,
    layer_idx: int,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v, kv_cache, attn_metadata, self.kv_scale, layer_idx)
    output, _ = self.o_proj(attn_output)
    return output


def vllm_attn_forward(
    self,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: Optional[torch.Tensor],
    attn_metadata,
    kv_scale: float = 1.0,
    layer_idx: int = 0,
) -> torch.Tensor:
    return self.impl.forward(
        query, key, value, kv_cache, attn_metadata, kv_scale, layer_idx
    )


def minference_patch_vllm(
    llm,
    config_file,
):
    from vllm.attention import Attention
    from vllm.model_executor.models.llama import (
        LlamaAttention,
        LlamaDecoderLayer,
        LlamaForCausalLM,
        LlamaModel,
    )

    config = json.load(open(config_file))
    attn_forward = minference_vllm_forward(config)

    def update_module(m):
        if isinstance(m, Attention):
            m.forward = vllm_attn_forward.__get__(m, Attention)

            m = m.impl
            m_cls = m.__class__
            m.gather_last_q_vertical_slash_topk_vllm = (
                gather_last_q_vertical_slash_topk_vllm.__get__(m, m_cls)
            )
            m.forward = attn_forward.__get__(m, m_cls)
        if isinstance(m, LlamaDecoderLayer):
            m.forward = llama_layer_forward_vllm.__get__(m, LlamaDecoderLayer)
        if isinstance(m, LlamaModel):
            m.forward = llama_model_forward_vllm.__get__(m, LlamaModel)
        if isinstance(m, LlamaAttention):
            m.forward = llama_attn_forward_vllm.__get__(m, LlamaAttention)

    llm.llm_engine.model_executor.driver_worker.model_runner.model.apply(update_module)

    print("Patched model for minference with VLLM..")
    return llm


def patch_hf(
    model,
    attn_type: str = "inf_llm",
    attn_kwargs: dict = {},
    base=None,
    distance_scale=None,
    **kwargs,
):
    attn_kwargs.update(kwargs)
    # This approach lacks scalability and will be refactored.
    from transformers import LlamaForCausalLM, MistralForCausalLM, Qwen2ForCausalLM
    from transformers.models.llama.modeling_llama import (
        BaseModelOutputWithPast,
        LlamaAttention,
        LlamaModel,
    )
    from transformers.models.mistral.modeling_mistral import (
        MistralAttention,
        MistralModel,
    )
    from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2Model

    def model_forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask=None,
        position_ids=None,
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        *args,
        **kwargs,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
            )
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError(
                "You have to specify either decoder_input_ids or decoder_inputs_embeds"
            )

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
            if hasattr(self, "config") and hasattr(self.config, "scale_emb"):
                inputs_embeds = inputs_embeds * self.config.scale_emb

        if use_cache:
            pkv = tuple()

        else:
            pkv = None

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for i, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=self.position_bias,
                past_key_value=(
                    past_key_values[i] if past_key_values is not None else None
                ),
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

            hidden_states = layer_outputs[0]

            if use_cache:
                _cache = layer_outputs[2 if output_attentions else 1]
                pkv = pkv + (_cache,)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        # hidden_states = self.norm(hidden_states)
        for start_idx in range(0, hidden_states.size(1), 32000):
            end_idx = min(hidden_states.size(1), start_idx + 32000)
            hidden_states[:, start_idx:end_idx, :] = self.norm(
                hidden_states[:, start_idx:end_idx, :]
            )

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, pkv, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=pkv,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    forward = huggingface_forward(ATTN_FORWRAD[attn_type](**attn_kwargs))

    if isinstance(model, LlamaForCausalLM):
        Attention = model.model.layers[0].self_attn.__class__
        Model = model.model.__class__
    elif isinstance(model, MistralForCausalLM):
        Attention = model.model.layers[0].self_attn.__class__
        Model = model.model.__class__
    elif isinstance(model, Qwen2ForCausalLM):
        Attention = model.model.layers[0].self_attn.__class__
        Model = model.model.__class__
    elif model.__class__.__name__ == "MiniCPMForCausalLM":
        Attention = model.model.layers[0].self_attn.__class__
        Model = model.model.__class__
    elif model.__class__.__name__ == "Phi3ForCausalLM":
        Attention = model.model.layers[0].self_attn.__class__
        Model = model.model.__class__
    else:
        raise ValueError("Only supports llama, mistral and qwen2 models.")

    hf_rope = model.model.layers[0].self_attn.rotary_emb
    base = base if base is not None else hf_rope.base
    distance_scale = distance_scale if distance_scale is not None else 1.0
    rope = RotaryEmbeddingESM(hf_rope.dim, base, distance_scale)
    model.model.position_bias = rope
    model.model.hf_position_bias = hf_rope

    def set_forward(m):
        if isinstance(m, Attention):
            m._old_forward = m.forward
            m.forward = forward.__get__(m, Attention)

    model.apply(set_forward)

    model._old_prepare_inputs_for_generation = model.prepare_inputs_for_generation
    model.prepare_inputs_for_generation = prepare_inputs_for_generation.__get__(
        model, model.__class__
    )
    model.model._old_forward = model.model.forward
    model.model.forward = model_forward.__get__(model.model, Model)

    if attn_type == "inf_llm":
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            model.config._name_or_path
        )
        model = InfLLMGenerator(model, tokenizer)

    print("Patched model ...")
    return model


def fp8_cache_update(
    self,
    key_states: torch.Tensor,
    value_states: torch.Tensor,
    layer_idx: int,
    cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

    Parameters:
        key_states (`torch.Tensor`):
            The new key states to cache.
        value_states (`torch.Tensor`):
            The new value states to cache.
        layer_idx (`int`):
            The index of the layer to cache the states for.
        cache_kwargs (`Dict[str, Any]`, `optional`):
            Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.

    Return:
        A tuple containing the updated key and value states.
    """
    # Update the number of seen tokens
    if layer_idx == 0:
        self.seen_tokens += key_states.shape[-2]

    # Update the cache
    if len(self.key_cache) <= layer_idx:
        self.key_cache.append(key_states.to(torch.float8_e5m2))
        self.value_cache.append(value_states.to(torch.float8_e5m2))
    else:
        self.key_cache[layer_idx] = torch.cat(
            [self.key_cache[layer_idx], key_states.to(torch.float8_e5m2)], dim=-2
        )
        self.value_cache[layer_idx] = torch.cat(
            [self.value_cache[layer_idx], value_states.to(torch.float8_e5m2)], dim=-2
        )

    return self.key_cache[layer_idx].to(key_states.dtype), self.value_cache[
        layer_idx
    ].to(key_states.dtype)


def cpu_cache_update(
    self,
    key_states: torch.Tensor,
    value_states: torch.Tensor,
    layer_idx: int,
    cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    if layer_idx == 0:
        if "_seen_tokens" in self.__dict__:
            self._seen_tokens += key_states.shape[-2]
        else:
            self.seen_tokens += key_states.shape[-2]

    # Update the cache
    if len(self.key_cache) <= layer_idx:
        self.key_cache.append(key_states.cpu())
        self.value_cache.append(value_states.cpu())
    else:
        self.key_cache[layer_idx] = torch.cat(
            [self.key_cache[layer_idx], key_states.cpu()], dim=-2
        )
        self.value_cache[layer_idx] = torch.cat(
            [self.value_cache[layer_idx], value_states.cpu()], dim=-2
        )


def cpu_cache_get(
    self,
    key_states: torch.Tensor,
    value_states: torch.Tensor,
    layer_idx: int,
    head_idx: int,
    cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    if layer_idx == 0:
        if "_seen_tokens" in self.__dict__:
            self._seen_tokens += key_states.shape[-2]
        else:
            self.seen_tokens += key_states.shape[-2]

    # Update the cache
    if len(self.key_cache) <= layer_idx:
        return key_states, value_states
    else:
        key_states = torch.cat(
            [self.key_cache[layer_idx][:, head_idx : head_idx + 1].cuda(), key_states],
            dim=-2,
        )
        value_states = torch.cat(
            [
                self.value_cache[layer_idx][:, head_idx : head_idx + 1].cuda(),
                value_states,
            ],
            dim=-2,
        )
        return key_states, value_states