Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
import math | |
import triton | |
import triton.language as tl | |
import pycuda.autoprimaryctx | |
from pycuda.compiler import SourceModule | |
from flash_attn import flash_attn_varlen_func | |
# @triton.autotune( | |
# configs=[ | |
# triton.Config({}, num_stages=1, num_warps=4), | |
# triton.Config({}, num_stages=1, num_warps=8), | |
# triton.Config({}, num_stages=2, num_warps=4), | |
# triton.Config({}, num_stages=2, num_warps=8), | |
# triton.Config({}, num_stages=3, num_warps=4), | |
# triton.Config({}, num_stages=3, num_warps=8), | |
# triton.Config({}, num_stages=4, num_warps=4), | |
# triton.Config({}, num_stages=4, num_warps=8), | |
# triton.Config({}, num_stages=5, num_warps=4), | |
# triton.Config({}, num_stages=5, num_warps=8), | |
# ], | |
# key=['N_CTX'], | |
# ) | |
def triton_sparse_fwd_kernel( | |
Q, K, V, seqlens, sm_scale, | |
block_count, block_offset, column_count, column_index, | |
Out, | |
stride_qz, stride_qh, stride_qm, stride_qk, | |
stride_kz, stride_kh, stride_kn, stride_kk, | |
stride_vz, stride_vh, stride_vn, stride_vk, | |
stride_oz, stride_oh, stride_om, stride_ok, | |
Z, H, N_CTX, | |
NUM_ROWS, NNZ_S, NNZ_V, | |
BLOCK_M: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
BLOCK_DMODEL: tl.constexpr, | |
dtype: tl.constexpr, | |
): | |
start_m = tl.program_id(0) | |
off_hz = tl.program_id(1) | |
seqlen = tl.load(seqlens + off_hz // H) | |
if start_m * BLOCK_M >= seqlen: | |
return | |
# initialize offsets | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
offs_n = tl.arange(0, BLOCK_N) | |
offs_d = tl.arange(0, BLOCK_DMODEL) | |
qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh | |
kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh | |
q_ptrs = Q + qo_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk | |
k_ptrs = K + kv_offset + offs_d[:, None] * stride_kk | |
v_ptrs = V + kv_offset + offs_d[None, :] * stride_vk | |
o_ptrs = Out + qo_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_ok | |
num_blks = tl.load(block_count + off_hz * NUM_ROWS + start_m) | |
blks_ptr = block_offset + (off_hz * NUM_ROWS + start_m) * NNZ_S | |
num_cols = tl.load(column_count + off_hz * NUM_ROWS + start_m) | |
cols_ptr = column_index + (off_hz * NUM_ROWS + start_m) * NNZ_V | |
# initialize pointer to m and l | |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") | |
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) | |
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) | |
# scale sm_scale by log_2(e) and use | |
# 2^x instead of exp in the loop because CSE and LICM | |
# don't work as expected with `exp` in the loop | |
qk_scale = sm_scale * 1.44269504 | |
# load q: it will stay in SRAM throughout | |
q = tl.load(q_ptrs) | |
q = (q * qk_scale).to(dtype) | |
# loop over k, v and update accumulator | |
m_mask = offs_m[:, None] < seqlen | |
for block_index in range(num_blks): | |
start_n = tl.load(blks_ptr + block_index) | |
cols = start_n + offs_n | |
n_mask = cols < seqlen | |
# -- load k, v -- | |
k = tl.load(k_ptrs + cols[None, :] * stride_kn, mask=n_mask[None, :], other=0.0) | |
v = tl.load(v_ptrs + cols[:, None] * stride_vn, mask=n_mask[:, None], other=0.0) | |
# -- compute qk -- | |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
causal_mask = cols[None, :] <= offs_m[:, None] | |
qk = tl.where(m_mask & causal_mask, qk, float("-inf")) | |
qk += tl.dot(q, k) | |
# -- compute scaling constant -- | |
m_i_new = tl.maximum(m_i, tl.max(qk, 1)) | |
alpha = tl.math.exp2(m_i - m_i_new) | |
p = tl.math.exp2(qk - m_i_new[:, None]) | |
# -- scale and update acc -- | |
acc_scale = l_i * 0 + alpha # workaround some compiler bug | |
acc *= acc_scale[:, None] | |
acc += tl.dot(p.to(dtype), v) | |
# -- update m_i and l_i -- | |
l_i = l_i * alpha + tl.sum(p, 1) | |
m_i = m_i_new | |
for start_n in range(0, num_cols, BLOCK_N): | |
n_mask = start_n + offs_n < num_cols | |
cols = tl.load(cols_ptr + start_n + offs_n, mask=n_mask, other=0) | |
# -- load k, v -- | |
k = tl.load(k_ptrs + cols[None, :] * stride_kn, mask=n_mask[None, :], other=0.0) | |
v = tl.load(v_ptrs + cols[:, None] * stride_vn, mask=n_mask[:, None], other=0.0) | |
# -- compute qk -- | |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
qk = tl.where(m_mask & n_mask, qk, float("-inf")) | |
qk += tl.dot(q, k) | |
# -- compute scaling constant -- | |
m_i_new = tl.maximum(m_i, tl.max(qk, 1)) | |
alpha = tl.math.exp2(m_i - m_i_new) | |
p = tl.math.exp2(qk - m_i_new[:, None]) | |
# -- scale and update acc -- | |
acc_scale = l_i * 0 + alpha # workaround some compiler bug | |
acc *= acc_scale[:, None] | |
acc += tl.dot(p.to(dtype), v) | |
# -- update m_i and l_i -- | |
l_i = l_i * alpha + tl.sum(p, 1) | |
m_i = m_i_new | |
# write back O | |
acc /= l_i[:, None] | |
# acc = tl.where(m_mask, acc / l_i[:, None], 0.0) | |
tl.store(o_ptrs, acc.to(dtype), mask=m_mask) | |
def triton_sparse_forward( | |
q: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] | |
k: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] | |
v: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] | |
seqlens: torch.Tensor, # [BATCH, ] | |
block_count: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] | |
block_offset: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S] | |
column_count: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] | |
column_index: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V] | |
sm_scale: float, | |
block_size_M: int = 64, | |
block_size_N: int = 64, | |
) -> torch.Tensor: | |
# shape constraints | |
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] | |
assert Lq == Lk and Lk == Lv | |
assert Lk in {16, 32, 64, 128} | |
o = torch.zeros_like(q) | |
grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1) | |
dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16 | |
triton_sparse_fwd_kernel[grid]( | |
q, k, v, seqlens, sm_scale, | |
block_count, block_offset, column_count, column_index, | |
o, | |
q.stride(0), q.stride(1), q.stride(2), q.stride(3), | |
k.stride(0), k.stride(1), k.stride(2), k.stride(3), | |
v.stride(0), v.stride(1), v.stride(2), v.stride(3), | |
o.stride(0), o.stride(1), o.stride(2), o.stride(3), | |
q.shape[0], q.shape[1], q.shape[2], | |
block_count.shape[-1], block_offset.shape[-1], column_index.shape[-1], | |
BLOCK_M=block_size_M, BLOCK_N=block_size_N, | |
BLOCK_DMODEL=Lk, | |
dtype=dtype, | |
num_warps=4, num_stages=2, | |
) | |
return o | |
def torch_build_index(seqlens, vertical_indexes, slash_indexes, context_size, block_size_M=64, block_size_N=64): | |
device = seqlens.device | |
batch_size, num_heads, NNZ_S = slash_indexes.shape | |
NNZ_V = vertical_indexes.shape[-1] | |
num_rows = triton.cdiv(context_size, block_size_M) | |
block_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32) | |
block_offset = torch.zeros((batch_size, num_heads, num_rows, NNZ_S), dtype=torch.int32) | |
column_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32) | |
column_index = torch.zeros((batch_size, num_heads, num_rows, NNZ_V), dtype=torch.int32) | |
for b in range(batch_size): | |
seqlen = seqlens[b] | |
for h in range(num_heads): | |
for m, start_m in enumerate(range(0, seqlen, block_size_M)): | |
end_m = start_m + block_size_M | |
s = 0 | |
while slash_indexes[b, h, s] >= end_m: | |
s += 1 | |
s_idx = max(end_m - slash_indexes[b, h, s], block_size_M) | |
s += 1 | |
range_start = s_idx - block_size_M | |
range_end = s_idx | |
tmp_blocks = [] | |
while s < NNZ_S: | |
s_idx = max(end_m - slash_indexes[b, h, s], block_size_M) | |
if s_idx > range_end + block_size_M: | |
tmp_blocks += list(range(range_start, range_end, block_size_N)) | |
range_start = s_idx - block_size_M | |
range_end = s_idx | |
elif s_idx > range_end: | |
range_end += block_size_M | |
s += 1 | |
tmp_blocks += list(range(range_start, range_end, block_size_N)) | |
block_count[b, h, m] = len(tmp_blocks) | |
block_offset[b, h, m, :len(tmp_blocks)] = torch.tensor(tmp_blocks, dtype=block_offset.dtype) | |
tmp_columns = vertical_indexes[b, h].cpu().numpy().tolist() | |
tmp_columns = [col for col in tmp_columns if col < range_end] | |
for range_start in tmp_blocks: | |
range_end = range_start + block_size_N | |
tmp_columns = [col for col in tmp_columns if col < range_start or col >= range_end] | |
column_count[b, h, m] = len(tmp_columns) | |
column_index[b, h, m, :len(tmp_columns)] = torch.tensor(tmp_columns, dtype=block_offset.dtype) | |
return block_count.to(device), block_offset.to(device), column_count.to(device), column_index.to(device) | |
PYCUDA_BUILD_INDEX_KERNEL_CODE = '''\ | |
__device__ int min(int x, int y) { | |
return x < y ? x : y; | |
} | |
__device__ int max(int x, int y) { | |
return x > y ? x : y; | |
} | |
__device__ void save_blocks(int* block_offset, int range_start, int range_end, int block_size, int& block_count) { | |
for (int idx = range_start; idx < range_end; idx += block_size) { | |
block_offset[block_count++] = idx; | |
} | |
} | |
__global__ void PYCUDA_BUILD_INDEX_KERNEL( | |
const int* seqlens, // [BATCH, ] | |
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V] | |
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S] | |
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] | |
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S] | |
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] | |
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V] | |
int N_HEADS, | |
int N_ROWS, | |
int BLOCK_SIZE_M, | |
int BLOCK_SIZE_N, | |
int NNZ_V, | |
int NNZ_S | |
) { | |
const int batch_idx = blockIdx.y; | |
const int head_idx = blockIdx.x; | |
const int group_idx = blockIdx.z; | |
int seqlen = seqlens[batch_idx]; | |
int block_idx_m = group_idx * blockDim.x + threadIdx.x; | |
int start_m = block_idx_m * BLOCK_SIZE_M; | |
if (start_m >= seqlen) { | |
return; | |
} | |
int end_m = start_m + BLOCK_SIZE_M; | |
vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V; | |
slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S; | |
int row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m; | |
block_count += row_offset; | |
block_offset += row_offset * NNZ_S; | |
column_count += row_offset; | |
column_index += row_offset * NNZ_V; | |
int tmp_col_cnt = 0, tmp_blk_cnt = 0; | |
int s = 0, v = 0; | |
int v_idx = vertical_indexes[v++]; | |
int s_idx = slash_indexes[s++]; | |
while (s_idx >= end_m) { | |
s_idx = slash_indexes[s++]; | |
} | |
s_idx = max(end_m - s_idx, BLOCK_SIZE_M); | |
int range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx; | |
while (1) { | |
if (v_idx < range_end) { | |
if (v_idx < range_start) { | |
column_index[tmp_col_cnt++] = v_idx; | |
} | |
if (v < NNZ_V) { | |
v_idx = vertical_indexes[v++]; | |
} else { | |
v_idx = end_m + BLOCK_SIZE_M; | |
} | |
} else { | |
if (s < NNZ_S) { | |
s_idx = max(end_m - slash_indexes[s++], BLOCK_SIZE_M); | |
} else { | |
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt); | |
break; | |
} | |
if (s_idx > range_end + BLOCK_SIZE_M) { | |
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt); | |
range_start = s_idx - BLOCK_SIZE_M; | |
range_end = s_idx; | |
} else if (s_idx > range_end) { | |
range_end += BLOCK_SIZE_M; | |
} | |
} | |
} | |
block_count[0] = tmp_blk_cnt; | |
column_count[0] = tmp_col_cnt; | |
} | |
''' | |
PYCUDA_BUILD_INDEX_KERNEL = SourceModule( | |
PYCUDA_BUILD_INDEX_KERNEL_CODE, | |
options=['-std=c++14', '-O3'], | |
).get_function(f'PYCUDA_BUILD_INDEX_KERNEL') | |
def pycuda_build_index(seqlens, vertical_indexes, slash_indexes, context_size, block_size_M=64, block_size_N=64): | |
batch_size, num_heads, NNZ_S = slash_indexes.shape | |
NNZ_V = vertical_indexes.shape[-1] | |
num_rows = triton.cdiv(context_size, block_size_M) | |
block_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32, device=seqlens.device) | |
block_offset = torch.zeros((batch_size, num_heads, num_rows, NNZ_S), dtype=torch.int32, device=seqlens.device) | |
column_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32, device=seqlens.device) | |
column_index = torch.zeros((batch_size, num_heads, num_rows, NNZ_V), dtype=torch.int32, device=seqlens.device) | |
num_threads = 64 | |
# import ipdb; ipdb.set_trace() | |
PYCUDA_BUILD_INDEX_KERNEL( | |
seqlens, vertical_indexes, slash_indexes, | |
block_count, block_offset, column_count, column_index, | |
np.int32(num_heads), np.int32(num_rows), | |
np.int32(block_size_M), np.int32(block_size_N), | |
np.int32(NNZ_V), np.int32(NNZ_S), | |
# grid=(triton.cdiv(num_rows, num_threads), N_HEADS, BATCH), | |
grid=(num_heads, batch_size, triton.cdiv(num_rows, num_threads)), | |
block=(num_threads, 1, 1), | |
) | |
return block_count, block_offset, column_count, column_index | |
def make_causal_mask(seqlens, device, context_size): | |
batch_size = seqlens.shape[0] | |
arange = torch.arange(context_size, dtype=torch.int32, device=device) | |
causal_mask = arange[None, None, :, None] >= arange[None, None, None, :] | |
causal_mask = causal_mask.repeat((batch_size, 1, 1, 1)) | |
for b, seqlen in enumerate(seqlens): | |
causal_mask[b, :, seqlen:, :] = False | |
causal_mask[b, :, :, seqlen:] = False | |
return causal_mask | |
def make_finegrained_mask(vertical_indexes, slash_indexes, causal_mask, device): | |
batch_size, num_heads, _ = vertical_indexes.shape | |
context_size = causal_mask.shape[-1] | |
arange = torch.arange(context_size, dtype=torch.int32, device=device) | |
sparse_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device) | |
for b in range(batch_size): | |
for h in range(num_heads): | |
for vertical_index in vertical_indexes[b, h]: | |
sparse_mask[b, h, :, vertical_index] = True | |
for slash_index in slash_indexes[b, h]: | |
sparse_mask[b, h].logical_or_(arange[:, None] - arange[None, :] == slash_index) | |
sparse_mask.logical_and_(causal_mask) | |
return sparse_mask | |
def make_block_mask( | |
block_count: torch.Tensor, | |
block_offset: torch.Tensor, | |
column_count: torch.Tensor, | |
column_index: torch.Tensor, | |
seqlens: torch.Tensor, | |
causal_mask: torch.Tensor, | |
device: torch.device, | |
block_size_M: int = 64, | |
block_size_N: int = 64. | |
): | |
batch_size, num_heads, _ = block_count.shape | |
context_size = causal_mask.shape[-1] | |
block_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device) | |
for b in range(batch_size): | |
for h in range(num_heads): | |
for m, start_m in enumerate(range(0, seqlens[b], block_size_M)): | |
end_m = start_m + block_size_M | |
for col_idx in range(column_count[b, h, m]): | |
block_mask[b, h, start_m:end_m, column_index[b, h, m, col_idx]] = True | |
for blk_idx in range(block_count[b, h, m]): | |
blk_start = block_offset[b, h, m, blk_idx].item() | |
blk_end = blk_start + block_size_N | |
block_mask[b, h, start_m:end_m, blk_start:blk_end] = True | |
block_mask.logical_and_(causal_mask) | |
return block_mask | |
def plot_mask(mask, name, batch=0, head=0): | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
plt.figure(figsize=(16, 12)) | |
plt.clf() | |
mask = mask[batch, head].cpu().numpy() | |
sns.heatmap(mask) | |
plt.savefig(name) | |
def triton_dense_fwd_kernel( | |
Q, K, V, seqlens, sm_scale, | |
Out, | |
stride_qz, stride_qh, stride_qm, stride_qk, | |
stride_kz, stride_kh, stride_kn, stride_kk, | |
stride_vz, stride_vh, stride_vn, stride_vk, | |
stride_oz, stride_oh, stride_om, stride_ok, | |
Z, H, N_CTX, | |
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
dtype: tl.constexpr, | |
): | |
start_m = tl.program_id(0) | |
off_hz = tl.program_id(1) | |
seqlen = tl.load(seqlens + off_hz // H) | |
if start_m * BLOCK_M >= seqlen: | |
return | |
qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh | |
kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh | |
Q_block_ptr = tl.make_block_ptr( | |
base=Q + qo_offset, | |
shape=(N_CTX, BLOCK_DMODEL), | |
strides=(stride_qm, stride_qk), | |
offsets=(start_m * BLOCK_M, 0), | |
block_shape=(BLOCK_M, BLOCK_DMODEL), | |
order=(1, 0) | |
) | |
K_block_ptr = tl.make_block_ptr( | |
base=K + kv_offset, | |
shape=(BLOCK_DMODEL, N_CTX), | |
strides=(stride_kk, stride_kn), | |
offsets=(0, 0), | |
block_shape=(BLOCK_DMODEL, BLOCK_N), | |
order=(0, 1) | |
) | |
V_block_ptr = tl.make_block_ptr( | |
base=V + kv_offset, | |
shape=(N_CTX, BLOCK_DMODEL), | |
strides=(stride_vn, stride_vk), | |
offsets=(0, 0), | |
block_shape=(BLOCK_N, BLOCK_DMODEL), | |
order=(1, 0) | |
) | |
# initialize offsets | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
offs_n = tl.arange(0, BLOCK_N) | |
# initialize pointer to m and l | |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") | |
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) | |
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) | |
# scale sm_scale by log_2(e) and use | |
# 2^x instead of exp in the loop because CSE and LICM | |
# don't work as expected with `exp` in the loop | |
qk_scale = sm_scale * 1.44269504 | |
# load q: it will stay in SRAM throughout | |
q = tl.load(Q_block_ptr) | |
q = (q * qk_scale).to(dtype) | |
# loop over k, v and update accumulator | |
lo = 0 | |
hi = (start_m + 1) * BLOCK_M | |
m_mask = offs_m[:, None] < seqlen | |
for start_n in range(lo, hi, BLOCK_N): | |
n_mask = (start_n + offs_n[None, :]) <= offs_m[:, None] | |
# -- load k, v -- | |
k = tl.load(K_block_ptr) | |
v = tl.load(V_block_ptr) | |
# -- compute qk -- | |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
qk = tl.where(m_mask & n_mask, qk, float("-inf")) | |
qk += tl.dot(q, k) | |
# -- compute scaling constant -- | |
m_i_new = tl.maximum(m_i, tl.max(qk, 1)) | |
alpha = tl.math.exp2(m_i - m_i_new) | |
p = tl.math.exp2(qk - m_i_new[:, None]) | |
# -- scale and update acc -- | |
acc_scale = l_i * 0 + alpha # workaround some compiler bug | |
acc *= acc_scale[:, None] | |
acc += tl.dot(p.to(dtype), v) | |
# -- update m_i and l_i -- | |
l_i = l_i * alpha + tl.sum(p, 1) | |
m_i = m_i_new | |
# update pointers | |
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) | |
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) | |
# write back O | |
acc = tl.where(m_mask, acc / l_i[:, None], 0.0) | |
O_block_ptr = tl.make_block_ptr( | |
base=Out + qo_offset, | |
shape=(N_CTX, BLOCK_DMODEL), | |
strides=(stride_om, stride_ok), | |
offsets=(start_m * BLOCK_M, 0), | |
block_shape=(BLOCK_M, BLOCK_DMODEL), | |
order=(1, 0) | |
) | |
tl.store(O_block_ptr, acc.to(dtype)) | |
def triton_dense_forward(q, k, v, seqlens, sm_scale, block_size_M=128, block_size_N=64) -> torch.Tensor: | |
# shape constraints | |
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] | |
assert Lq == Lk and Lk == Lv | |
assert Lk in {16, 32, 64, 128} | |
o = torch.zeros_like(q) | |
grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1) | |
num_warps = 4 if Lk <= 64 else 8 # 4 | |
dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16 | |
triton_dense_fwd_kernel[grid]( | |
q, k, v, seqlens, sm_scale, | |
o, | |
q.stride(0), q.stride(1), q.stride(2), q.stride(3), | |
k.stride(0), k.stride(1), k.stride(2), k.stride(3), | |
v.stride(0), v.stride(1), v.stride(2), v.stride(3), | |
o.stride(0), o.stride(1), o.stride(2), o.stride(3), | |
q.shape[0], q.shape[1], q.shape[2], | |
BLOCK_M=block_size_M, BLOCK_N=block_size_N, | |
BLOCK_DMODEL=Lk, | |
dtype=dtype, | |
num_warps=num_warps, num_stages=4, | |
) | |
return o | |
def flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) -> torch.Tensor: | |
return flash_attn_varlen_func( | |
q, | |
k, | |
v, | |
cu_seqlens_q=seqlens, | |
cu_seqlens_k=seqlens, | |
max_seqlen_q=context_size, | |
max_seqlen_k=context_size, | |
dropout_p=0.0, | |
softmax_scale=sm_scale, | |
causal=True, | |
) | |
def torch_forward( | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor, | |
sm_scale: float, | |
) -> torch.Tensor: | |
p = torch.einsum(f'bhmk, bhnk -> bhmn', query, key) * sm_scale | |
p = p.where(mask, -torch.inf) | |
p_max = p.max(-1, keepdim=True).values | |
p_max = torch.where(p_max < 0, 0.0, p_max) | |
p_exp = torch.exp(p - p_max) | |
s = p_exp / (p_exp.sum(-1, keepdim=True) + 1e-6) | |
out = torch.einsum(f'bhmn, bhnk -> bhmk', s, value) | |
return out | |
def profile(fn, total_flops, tag, warmup=25, rep=100): | |
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) | |
gflops = total_flops / ms * 1e-9 | |
print(f'{tag}: {ms:.3f} ms | {gflops:.3f} GFLOP/s') | |
def test_flash_attention( | |
query=None, | |
key=None, | |
value=None, | |
seqlens=None, | |
vertical_indexes=None, | |
slash_indexes=None, | |
dtype=torch.float16, | |
device="cuda", | |
torch_test=True, | |
batch_size=4, | |
num_heads=32, | |
context_size=2048, | |
head_dim=128, | |
nnz_v=100, | |
nnz_s=10, | |
block_size_M=64, | |
block_size_N=64, | |
): | |
print('========================================') | |
if query is None and key is None and value is None: | |
q = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) | |
k = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) | |
v = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) | |
else: | |
q = torch.tensor(query, dtype=dtype, device=device) | |
k = torch.tensor(key, dtype=dtype, device=device) | |
v = torch.tensor(value, dtype=dtype, device=device) | |
batch_size, num_heads, context_size, head_dim = q.shape | |
print(f'BATCH={batch_size}, N_CTX={context_size}, N_HEADS={num_heads}, D_HEAD={head_dim}') | |
if seqlens is None: | |
seqlens = torch.randint(context_size // 2, context_size, (batch_size, ), dtype=torch.int32, device=device) | |
else: | |
seqlens = torch.tensor(seqlens, dtype=torch.int32, device=device) | |
print(seqlens) | |
dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2 | |
sm_scale = head_dim ** -0.5 | |
if torch_test: | |
causal_mask = make_causal_mask(seqlens, device, context_size) | |
ref_o_dense = torch_forward(q, k, v, causal_mask, sm_scale) | |
if vertical_indexes is None or slash_indexes is None: | |
vertical_indexes = torch.stack([ | |
torch.stack([ | |
torch.randperm(seqlen, dtype=torch.int32, device=device)[:nnz_v].sort(descending=False)[0] | |
for _ in range(num_heads) | |
]) | |
for seqlen in seqlens | |
]) | |
slash_indexes = torch.concatenate([ | |
torch.stack([ | |
torch.stack([ | |
torch.randperm(seqlen - 1, dtype=torch.int32, device=device)[:nnz_s - 1].sort(descending=True)[0] + 1 | |
for _ in range(num_heads) | |
]) | |
for seqlen in seqlens | |
]), | |
torch.zeros((batch_size, num_heads, 1), dtype=torch.int32, device=device) | |
], dim=-1) | |
pycuda_build_index_fn = lambda: pycuda_build_index( | |
seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N | |
) | |
indexes = pycuda_build_index_fn() | |
block_count, block_offset, column_count, column_index = indexes | |
if torch_test: | |
block_count_ref, block_offset_ref, column_count_ref, column_index_ref = torch_build_index( | |
seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N | |
) | |
torch.testing.assert_close(block_count_ref, block_count) | |
torch.testing.assert_close(block_offset_ref, block_offset) | |
torch.testing.assert_close(column_count_ref, column_count) | |
torch.testing.assert_close(column_index_ref, column_index) | |
sparse_mask_nnz = column_count.to(torch.float64).sum().item() * block_size_M + \ | |
block_count.to(torch.float64).sum().item() * block_size_M * block_size_N | |
print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}') | |
pycuda_build_index_fn = lambda: pycuda_build_index( | |
seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N | |
) | |
profile(pycuda_build_index_fn, 0., 'pycuda-index') | |
if torch_test: | |
finegrained_mask = make_finegrained_mask(vertical_indexes, slash_indexes, causal_mask, device) | |
block_mask = make_block_mask(*indexes, seqlens, causal_mask, device, block_size_M, block_size_N) | |
plot_mask(finegrained_mask, 'mask.png', 0, 0) | |
plot_mask(block_mask, 'mask-1.png', 0, 0) | |
ref_o_sparse = torch_forward(q, k, v, block_mask, sm_scale) | |
triton_dense_fn = lambda: triton_dense_forward(q, k, v, seqlens, sm_scale) | |
output_triton_dense = triton_dense_fn() | |
if torch_test: | |
# Note: not correct for context_size % block_size_M != 0 | |
torch.testing.assert_close(output_triton_dense, ref_o_dense, atol=1e-2, rtol=0) | |
profile(triton_dense_fn, 2. * head_dim * dense_mask_nnz, 'triton-dense') | |
triton_sparse_fn = lambda: triton_sparse_forward(q, k, v, seqlens, *indexes, sm_scale, block_size_M, block_size_N) | |
output_triton_sparse = triton_sparse_fn() | |
if torch_test: | |
torch.testing.assert_close(output_triton_sparse, ref_o_sparse, atol=1e-2, rtol=0) | |
profile(triton_sparse_fn, 2. * head_dim * sparse_mask_nnz, 'triton-sparse') | |
q = q.swapaxes(1, 2).contiguous() | |
k = k.swapaxes(1, 2).contiguous() | |
v = v.swapaxes(1, 2).contiguous() | |
q = torch.concatenate([q[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) | |
k = torch.concatenate([k[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) | |
v = torch.concatenate([v[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) | |
seqlens = torch.nn.functional.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0)) | |
flash_fn = lambda: flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) | |
output_flash = flash_fn() | |
output_flash = torch.stack([ | |
torch.nn.functional.pad( | |
output_flash[seqlens[i]:seqlens[i + 1], :, :], | |
(0, 0, 0, 0, 0, context_size + seqlens[i] - seqlens[i + 1]) | |
) | |
for i in range(batch_size) | |
]).swapaxes(1, 2).contiguous() | |
if torch_test: | |
torch.testing.assert_close(output_flash, ref_o_dense, atol=1e-2, rtol=0) | |
profile(flash_fn, 2. * head_dim * dense_mask_nnz, 'flash-dense') | |
print('========================================\n') | |
if torch_test and sparse_mask_nnz >= dense_mask_nnz: | |
torch.testing.assert_close(output_flash, output_triton_sparse, atol=1e-2, rtol=0) | |
def pit_sparse_flash_attention_forward( | |
query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] | |
key: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] | |
value: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] | |
v_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_V] | |
s_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_S] | |
block_size_M: int = 64, | |
block_size_N: int = 64, | |
): | |
batch_size, num_heads, context_size, head_dim = query.shape | |
pad = block_size_M - (context_size & (block_size_M - 1)) | |
query = torch.nn.functional.pad(query, [0, 0, 0, pad, 0, 0, 0, 0]) | |
key = torch.nn.functional.pad(key, [0, 0, 0, pad, 0, 0, 0, 0]) | |
value = torch.nn.functional.pad(value, [0, 0, 0, pad, 0, 0, 0, 0]) | |
if head_dim not in [16, 32, 64, 128, 256, 512]: | |
target_dim = 2 ** math.ceil(math.log2(head_dim)) - head_dim | |
query = torch.nn.functional.pad(query, [0, target_dim, 0, 0, 0, 0, 0, 0]) | |
key = torch.nn.functional.pad(key, [0, target_dim, 0, 0, 0, 0, 0, 0]) | |
value = torch.nn.functional.pad(value, [0, target_dim, 0, 0, 0, 0, 0, 0]) | |
v_idx = v_idx.to(torch.int32).reshape((batch_size, num_heads, -1)).sort(dim=-1, descending=False)[0] | |
s_idx = s_idx.to(torch.int32).reshape((batch_size, num_heads, -1)).sort(dim=-1, descending=True)[0] | |
seqlens = torch.tensor([context_size], dtype=torch.int32, device=query.device) | |
sm_scale = head_dim ** -0.5 | |
block_count, block_offset, column_count, column_index = pycuda_build_index( | |
seqlens, v_idx, s_idx, context_size, block_size_M, block_size_N, | |
) | |
# if context_size > 700000: | |
# import ipdb; ipdb.set_trace() | |
# dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2 | |
# sparse_mask_nnz = column_count.to(torch.float64).sum().item() * block_size_M + \ | |
# block_count.to(torch.float64).sum().item() * block_size_M * block_size_N | |
# print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}') | |
out = triton_sparse_forward( | |
query, key, value, seqlens, | |
block_count, block_offset, column_count, column_index, | |
sm_scale, block_size_M, block_size_N, | |
) | |
return out[..., :context_size, :head_dim] |