File size: 884 Bytes
2786fbb
 
 
 
9ba2a1c
 
a67942c
9ba2a1c
 
 
27faa92
 
9ba2a1c
 
 
 
 
 
a67942c
2786fbb
51499e8
a67942c
 
9ba2a1c
 
 
 
 
2786fbb
6dd1808
 
 
 
2786fbb
9ba2a1c
2786fbb
c7104a2
0a35b67
68d3cae
9ba2a1c
 
2786fbb
9ba2a1c
2786fbb
 
 
 
 
7487639
9ba2a1c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52




import torch

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio

import tempfile
import os




model = separator.from_hparams(source="speechbrain/sepformer-libri2mix", savedir='pretrained_models/sepformer-libri2mix')





demo = gr.Blocks()


def separateaudio(filepath):
    est_sources = model.separate_file(path=filepath)
    output_path = "file.wav"
    torchaudio.save(output_path, est_sources[:, :, 0].detach().cpu(), 8000)
    return output_path
    

separation = gr.Interface(
    fn=separateaudio,
    inputs=gr.Audio( type="filepath"),
    outputs=gr.Audio(type="filepath"),
)


with demo:
    gr.TabbedInterface(
        [separation],
        ["Separate audio file"],
    )

demo.launch()