sepformergradio / app.py
midoux05's picture
Update app.py
7487639 verified
raw
history blame contribute delete
884 Bytes
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio
import tempfile
import os
model = separator.from_hparams(source="speechbrain/sepformer-libri2mix", savedir='pretrained_models/sepformer-libri2mix')
demo = gr.Blocks()
def separateaudio(filepath):
est_sources = model.separate_file(path=filepath)
output_path = "file.wav"
torchaudio.save(output_path, est_sources[:, :, 0].detach().cpu(), 8000)
return output_path
separation = gr.Interface(
fn=separateaudio,
inputs=gr.Audio( type="filepath"),
outputs=gr.Audio(type="filepath"),
)
with demo:
gr.TabbedInterface(
[separation],
["Separate audio file"],
)
demo.launch()