Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 21,354 Bytes
23c9328 e8d974b 23c9328 e8d974b 23c9328 e8d974b 2e10707 23c9328 2e10707 23c9328 e8d974b 23c9328 e8d974b 23c9328 518473f 23c9328 518473f 23c9328 915c386 a4d42d6 915c386 a4d42d6 915c386 a4d42d6 915c386 a4d42d6 915c386 a4d42d6 915c386 a4d42d6 eef918c a608e49 eef918c 23c9328 68d7969 23c9328 518473f 23c9328 518473f 23c9328 a8ab2ec 23c9328 518473f 23c9328 eef918c 8c67b7b eef918c 8c67b7b eef918c a608e49 eef918c 23c9328 eef918c 23c9328 ce70feb 23c9328 32d3921 23c9328 2e10707 439d41e 23c9328 439d41e 23c9328 439d41e 23c9328 2e10707 23c9328 2e10707 23c9328 439d41e 23c9328 d06a894 23c9328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
italian_only: bool,
query: str,
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, italian_only)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
# def filter_models(
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, italian_only: bool
# ) -> pd.DataFrame:
# # Show all models
# if show_deleted:
# filtered_df = df.copy()
# else: # Show only still on the hub models
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True].copy()
# filtered_df[AutoEvalColumn.model.name] = filtered_df[AutoEvalColumn.model.name].apply(lambda x: x.split('>')[-2].split('<')[0] if '<a' in x else x)
# type_emoji = [t[0] for t in type_query]
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
# params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
# filtered_df = filtered_df[mask]
# if italian_only:
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.author.name] == "๐ฎ๐น"]
# return filtered_df
def get_data_totale():
dataset = pd.read_csv("mmlu_pro_it.csv", sep=',')
if 'model ' in dataset.columns:
dataset.rename(columns={'model ': 'model'}, inplace=True)
return dataset
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" ๐ Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(
value=True, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320):
italian_only_checkbox = gr.Checkbox(
label="Show only models made by Italians",
value=False,
interactive=True,
)
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
italian_only_checkbox,
search_bar,
],
leaderboard_table,
)
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, italian_only_checkbox]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
italian_only_checkbox,
search_bar,
],
leaderboard_table,
queue=True,
)
# with gr.TabItem('Classifica RAG'):
# gr.Markdown('''# Classifica RAG degli LLM italiani''')
# gr.Markdown(f'''In questa sezione i modelli sono valutati su dei task di Q&A e ordinati per F1 Score e EM (Exact Match). La repo di riferimento รจ [questa](https://github.com/C080/open-llm-ita-leaderboard).
# I modelli in cima alla classifica sono ritenuti preferibili per i task di Retrieval Augmented Generation.''')
# gr.Dataframe(pd.read_csv('leaderboard.csv', sep=';'))
# gr.Markdown(f"Si ringrazia il @galatolo per il codice dell'eval.")
with gr.TabItem('Eval aggiuntive'):
gr.Markdown('''# Altre evaluation''')
gr.Markdown('''* classifica [INVALSI](https://huggingface.co/spaces/Crisp-Unimib/INVALSIbenchmark) gestita dai nostri amici del [CRISP](https://crispresearch.it/)''')
gr.Markdown('''* analisi dei modelli fatti da ita su [mmlu pro it](https://huggingface.co/datasets/efederici/MMLU-Pro-ita)''')
gr.Dataframe(get_data_totale)
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("๐ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"โ
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"๐ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# โ๏ธโจ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("๐ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
# import gradio as gr
# import pandas as pd
# csv_filename = 'leaderboard.csv'
# # url = 'https://docs.google.com/spreadsheets/d/1Oh3nrbdWjKuh9twJsc9yJLppiJeD_BZyKgCTOxRkALM/export?format=csv'
# def get_data_classifica():
# dataset = pd.read_csv("leaderboard_general.csv", sep=',')
# if 'model ' in dataset.columns:
# dataset.rename(columns={'model ': 'model'}, inplace=True)
# df_classifica = dataset[['model', 'helloswag_it acc norm', 'arc_it acc norm', 'm_mmlu_it acc shot 5']]
# df_classifica['media'] = df_classifica[['helloswag_it acc norm', 'arc_it acc norm', 'm_mmlu_it acc shot 5']].mean(axis=1)
# df_classifica['media'] = df_classifica['media'].round(3)
# df_classifica = df_classifica.sort_values(by='media', ascending=False)
# df_classifica = df_classifica[['model', 'media', 'helloswag_it acc norm', 'arc_it acc norm', 'm_mmlu_it acc shot 5']]
# return df_classifica
# def get_data_totale():
# dataset = pd.read_csv("leaderboard_general.csv", sep=',')
# if 'model ' in dataset.columns:
# dataset.rename(columns={'model ': 'model'}, inplace=True)
# return dataset
# with gr.Blocks() as demo:
# with gr.Tab('Classifica Generale'):
# gr.Markdown('''# Classifica generale degli LLM italiani''')
# discord_link = 'https://discord.gg/m7sS3mduY2'
# gr.Markdown('''
# I modelli sottostanti sono stati testati con [lm_evaluation_harness](https://github.com/EleutherAI/lm-evaluation-harness) su task specifici per l'italiano introdotti con questa [PR](https://github.com/EleutherAI/lm-evaluation-harness/pull/1358).
# L'intero progetto, i modelli e i dataset sono rigorosamente open source e tutti i risultati sono riproducibili lanciando i seguenti comandi:
# ```
# lm_eval --model hf --model_args pretrained=HUGGINGFACE_MODEL_ID --tasks hellaswag_it,arc_it --device cuda:0 --batch_size auto:2
# ```
# ```
# lm_eval --model hf --model_args pretrained=HUGGINGFACE_MODEL_ID --tasks m_mmlu_it --num_fewshot 5 --device cuda:0 --batch_size auto:2
# ```
# ''')
# gr.DataFrame(get_data_classifica, every=3600)
# gr.Markdown(f"Contributore principale: @giux78")
# gr.Markdown('''
# ### Risultati su modelli "internazionali" (instruct)
# | Model | Arc-c | HellaS | MMUL | AVG |
# | --- | --- | --- | --- | --- |
# | Mixtral 8x22b | 55.3 | 77.1 | 75.8 | 69.4 |
# | LLama3 70b | 52.9 | 70.3 | 74.8 | 66.0 |
# | command-r-plus | 49.5 | 74.9 | 67.6 | 64.0 |
# | Mixtral 8x7b | 51.1 | 72.9 | 65.9 | 63.3 |
# | LLama2 70b | 49.4 | 70.9 | 65.1 | 61.8 |
# | command-r-v01 | 50.8 | 72.3 | 60.0 | 61.0 |
# | Phi-3-mini | 43.46 | 61.44 | 56.55 | 53.8 |
# | LLama3 8b | 44.3 | 59.9 | 55.7 | 53.3 |
# | LLama1 34b | 42.9 | 65.4 | 49.0 | 52.4 |
# | Mistral 7b | 41.49 | 61.22 | 52.53 | 51.7 |
# | Gemma 1.1 7b | 41.75 | 54.07 | 49.45 | 48.4 |
# ''')
# with gr.Tab('Classifica RAG'):
# gr.Markdown('''# Classifica RAG degli LLM italiani''')
# gr.Markdown(f'''In questa sezione i modelli sono valutati su dei task di Q&A e ordinati per F1 Score e EM (Exact Match). La repo di riferimento รจ [questa](https://github.com/C080/open-llm-ita-leaderboard).
# I modelli in cima alla classifica sono ritenuti preferibili per i task di Retrieval Augmented Generation.''')
# gr.Dataframe(pd.read_csv(csv_filename, sep=';'))
# gr.Markdown(f"Si ringrazia il @galatolo per il codice dell'eval.")
# with gr.Tab('Eval aggiuntive'):
# gr.Markdown('''# Altre evaluation''')
# gr.Markdown('''Qui ci sono altri test di altri modelli, che non sono ancora stati integrati nella classifica generale.''')
# gr.DataFrame(get_data_totale, every=3600)
# with gr.Tab('Informazioni'):
# form_link = "https://forms.gle/Gc9Dfu52xSBhQPpAA"
# gr.Markdown('''# Community discord
# Se vuoi contribuire al progetto o semplicemente unirti alla community di LLM italiani unisciti al nostro [discord!](https://discord.gg/m7sS3mduY2)
# # Aggiungi il tuo modello
# Se hai sviluppato un tuo modello che vuoi far valutare, compila il form [qui](https://forms.gle/Gc9Dfu52xSBhQPpAA) รจ tutto gratuito!
# ''')
# with gr.Tab('Sponsor'):
# gr.Markdown('''
# # Sponsor
# Le evaluation della classifica generale sono state gentilmente offerte da un provider cloud italiano [seeweb.it](https://www.seeweb.it/) specializzato in servizi di GPU cloud e AI.
# ''')
# demo.launch() |