File size: 21,354 Bytes
23c9328
e8d974b
 
23c9328
 
e8d974b
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d974b
2e10707
23c9328
 
2e10707
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d974b
 
23c9328
 
e8d974b
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518473f
23c9328
 
518473f
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915c386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d42d6
 
 
 
 
915c386
a4d42d6
915c386
 
 
a4d42d6
 
915c386
 
a4d42d6
 
915c386
a4d42d6
915c386
 
a4d42d6
 
 
 
 
eef918c
a608e49
eef918c
 
 
 
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d7969
23c9328
 
518473f
 
 
 
 
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518473f
23c9328
 
 
 
a8ab2ec
23c9328
 
 
 
 
 
 
 
 
518473f
23c9328
 
 
 
 
eef918c
8c67b7b
eef918c
8c67b7b
 
 
 
 
eef918c
 
 
 
 
a608e49
 
eef918c
 
23c9328
eef918c
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce70feb
23c9328
 
 
32d3921
23c9328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e10707
439d41e
23c9328
439d41e
23c9328
 
 
439d41e
23c9328
2e10707
23c9328
 
 
 
 
 
2e10707
23c9328
439d41e
23c9328
 
 
 
d06a894
23c9328
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    type_query: list,
    precision_query: str,
    size_query: list,
    show_deleted: bool,
    italian_only: bool,
    query: str,
):
    filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, italian_only)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] 
    ]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    if show_deleted:
        filtered_df = df
    else:  # Show only still on the hub models
        filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    type_emoji = [t[0] for t in type_query]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df

# def filter_models(
#     df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, italian_only: bool
# ) -> pd.DataFrame:
#     # Show all models
#     if show_deleted:
#         filtered_df = df.copy()
#     else:  # Show only still on the hub models
#         filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True].copy()

#     filtered_df[AutoEvalColumn.model.name] = filtered_df[AutoEvalColumn.model.name].apply(lambda x: x.split('>')[-2].split('<')[0] if '<a' in x else x)

#     type_emoji = [t[0] for t in type_query]
#     filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
#     filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

#     numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
#     params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
#     mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
#     filtered_df = filtered_df[mask]

#     if italian_only:
#         filtered_df = filtered_df[filtered_df[AutoEvalColumn.author.name] == "๐Ÿ‡ฎ๐Ÿ‡น"]

#     return filtered_df

def get_data_totale():
    dataset = pd.read_csv("mmlu_pro_it.csv", sep=',')
    if 'model ' in dataset.columns:
        dataset.rename(columns={'model ': 'model'}, inplace=True)
    return dataset


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("๐Ÿ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" ๐Ÿ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    with gr.Row():
                        deleted_models_visibility = gr.Checkbox(
                            value=True, label="Show gated/private/deleted models", interactive=True
                        )
                with gr.Column(min_width=320):
                    italian_only_checkbox = gr.Checkbox(
                        label="Show only models made by Italians",
                        value=False,
                        interactive=True,
                        )
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_precision = gr.CheckboxGroup(
                        label="Precision",
                        choices=[i.value.name for i in Precision],
                        value=[i.value.name for i in Precision],
                        interactive=True,
                        elem_id="filter-columns-precision",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )

            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                    + shown_columns.value
                ],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    filter_columns_type,
                    filter_columns_precision,
                    filter_columns_size,
                    deleted_models_visibility,
                    italian_only_checkbox,
                    search_bar,
                ],
                leaderboard_table,
            )
            for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, italian_only_checkbox]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        filter_columns_type,
                        filter_columns_precision,
                        filter_columns_size,
                        deleted_models_visibility,
                        italian_only_checkbox,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )
        
        # with gr.TabItem('Classifica RAG'):

        #         gr.Markdown('''# Classifica RAG degli LLM italiani''')
        #         gr.Markdown(f'''In questa sezione i modelli sono valutati su dei task di Q&A e ordinati per F1 Score e EM (Exact Match). La repo di riferimento รจ [questa](https://github.com/C080/open-llm-ita-leaderboard).
        #                     I modelli in cima alla classifica sono ritenuti preferibili per i task di Retrieval Augmented Generation.''')
        #         gr.Dataframe(pd.read_csv('leaderboard.csv', sep=';'))
        #         gr.Markdown(f"Si ringrazia il @galatolo per il codice dell'eval.")
                

        with gr.TabItem('Eval aggiuntive'):

                gr.Markdown('''# Altre  evaluation''')
                gr.Markdown('''* classifica [INVALSI](https://huggingface.co/spaces/Crisp-Unimib/INVALSIbenchmark) gestita dai nostri amici del [CRISP](https://crispresearch.it/)''') 
                gr.Markdown('''* analisi dei modelli fatti da ita su [mmlu pro it](https://huggingface.co/datasets/efederici/MMLU-Pro-ita)''')
                gr.Dataframe(get_data_totale) 
                

        
        with gr.TabItem("๐Ÿ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("๐Ÿš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"โœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"๐Ÿ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# โœ‰๏ธโœจ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("๐Ÿ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()


# import gradio as gr
# import pandas as pd

# csv_filename = 'leaderboard.csv'
# # url = 'https://docs.google.com/spreadsheets/d/1Oh3nrbdWjKuh9twJsc9yJLppiJeD_BZyKgCTOxRkALM/export?format=csv'

# def get_data_classifica():
#     dataset = pd.read_csv("leaderboard_general.csv", sep=',')
#     if 'model ' in dataset.columns:
#         dataset.rename(columns={'model ': 'model'}, inplace=True)
#     df_classifica = dataset[['model', 'helloswag_it acc norm', 'arc_it acc norm', 'm_mmlu_it acc shot 5']]
#     df_classifica['media'] = df_classifica[['helloswag_it acc norm', 'arc_it acc norm', 'm_mmlu_it acc shot 5']].mean(axis=1)
#     df_classifica['media'] = df_classifica['media'].round(3) 
#     df_classifica = df_classifica.sort_values(by='media', ascending=False) 
#     df_classifica = df_classifica[['model', 'media', 'helloswag_it acc norm', 'arc_it acc norm', 'm_mmlu_it acc shot 5']]

#     return df_classifica

# def get_data_totale():
#     dataset = pd.read_csv("leaderboard_general.csv", sep=',')
#     if 'model ' in dataset.columns:
#         dataset.rename(columns={'model ': 'model'}, inplace=True)
#     return dataset

# with gr.Blocks() as demo:

#         with gr.Tab('Classifica Generale'):

#             gr.Markdown('''# Classifica generale degli LLM italiani''')
#             discord_link = 'https://discord.gg/m7sS3mduY2'
#             gr.Markdown('''
#             I modelli sottostanti sono stati testati con [lm_evaluation_harness](https://github.com/EleutherAI/lm-evaluation-harness) su task specifici per l'italiano introdotti con questa [PR](https://github.com/EleutherAI/lm-evaluation-harness/pull/1358).
#             L'intero progetto, i modelli e i dataset sono rigorosamente open source e tutti i risultati sono riproducibili lanciando i seguenti comandi:
            
#                 ```
#                    lm_eval --model hf --model_args pretrained=HUGGINGFACE_MODEL_ID  --tasks hellaswag_it,arc_it  --device cuda:0 --batch_size auto:2
#                 ```
    
#                 ```
#                    lm_eval --model hf --model_args pretrained=HUGGINGFACE_MODEL_ID  --tasks m_mmlu_it --num_fewshot 5  --device cuda:0 --batch_size auto:2 
#                 ```
#             ''')
#             gr.DataFrame(get_data_classifica, every=3600)            
#             gr.Markdown(f"Contributore principale: @giux78")
#             gr.Markdown('''
#             ### Risultati su modelli "internazionali" (instruct)

#             | Model | Arc-c  | HellaS | MMUL | AVG |
#             | --- | --- | --- | --- | --- |
#             | Mixtral 8x22b | 55.3 | 77.1 | 75.8 | 69.4 |
#             | LLama3 70b | 52.9 | 70.3 | 74.8 | 66.0 |
#             | command-r-plus | 49.5 | 74.9 | 67.6 | 64.0 |
#             | Mixtral 8x7b | 51.1 | 72.9 | 65.9 | 63.3 |
#             | LLama2 70b | 49.4 | 70.9 | 65.1 | 61.8 |
#             | command-r-v01 | 50.8 | 72.3 | 60.0 | 61.0 |
#             | Phi-3-mini | 43.46 | 61.44 | 56.55 | 53.8 |
#             | LLama3 8b | 44.3 | 59.9 | 55.7 | 53.3 |
#             | LLama1 34b | 42.9 | 65.4 | 49.0 | 52.4 |
#             | Mistral 7b | 41.49 | 61.22 | 52.53 | 51.7 |
#             | Gemma 1.1 7b | 41.75 | 54.07 | 49.45 | 48.4 |

#             ''')


#         with gr.Tab('Classifica RAG'):

#             gr.Markdown('''# Classifica RAG degli LLM italiani''')
#             gr.Markdown(f'''In questa sezione i modelli sono valutati su dei task di Q&A e ordinati per F1 Score e EM (Exact Match). La repo di riferimento รจ [questa](https://github.com/C080/open-llm-ita-leaderboard).
#                         I modelli in cima alla classifica sono ritenuti preferibili per i task di Retrieval Augmented Generation.''')
#             gr.Dataframe(pd.read_csv(csv_filename, sep=';'))
#             gr.Markdown(f"Si ringrazia il @galatolo per il codice dell'eval.")
            

#         with gr.Tab('Eval aggiuntive'):

#             gr.Markdown('''# Altre evaluation''')
#             gr.Markdown('''Qui ci sono altri test di altri modelli, che non sono ancora stati integrati nella classifica generale.''')
#             gr.DataFrame(get_data_totale, every=3600) 

#         with gr.Tab('Informazioni'):
            
#             form_link = "https://forms.gle/Gc9Dfu52xSBhQPpAA"
#             gr.Markdown('''# Community discord
#             Se vuoi contribuire al progetto o semplicemente unirti alla community di LLM italiani unisciti al nostro [discord!](https://discord.gg/m7sS3mduY2)
#             # Aggiungi il tuo modello
#             Se hai sviluppato un tuo modello che vuoi far valutare, compila il form [qui](https://forms.gle/Gc9Dfu52xSBhQPpAA) รจ tutto gratuito!         
#             ''') 
        
#         with gr.Tab('Sponsor'):

#             gr.Markdown('''
#             # Sponsor
#             Le evaluation della classifica generale sono state gentilmente offerte da un provider cloud italiano [seeweb.it](https://www.seeweb.it/) specializzato in servizi di GPU cloud e AI.
#             ''')
            
# demo.launch()