File size: 10,500 Bytes
efeb6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5985946
 
efeb6fd
 
 
5985946
efeb6fd
5985946
efeb6fd
5985946
efeb6fd
5985946
efeb6fd
 
1b57d37
5985946
 
 
 
 
efeb6fd
 
5985946
 
 
 
efeb6fd
 
5985946
efeb6fd
5985946
efeb6fd
5985946
efeb6fd
 
 
 
5985946
efeb6fd
1c6a5e4
efeb6fd
fd32063
 
 
 
5985946
fd32063
 
 
 
 
 
 
efeb6fd
 
fd32063
 
 
 
 
 
 
efeb6fd
 
fd32063
 
 
efeb6fd
1c6a5e4
5985946
efeb6fd
 
 
 
 
 
3de5822
 
 
 
efeb6fd
 
f1d1123
efeb6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
5985946
 
efeb6fd
 
 
 
 
 
 
 
5985946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efeb6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5985946
efeb6fd
 
 
 
 
 
 
 
 
931f2cd
efeb6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import requests
from io import BytesIO
from PyPDF2 import PdfReader
import pandas as pd
from openai.embeddings_utils import get_embedding, cosine_similarity
import openai
import pkg_resources
import streamlit as st
import numpy as np



messages = [
    {"role": "system", "content": "You are SummarizeGPT, a large language model whose expertise is reading and summarizing scientific papers."}
]

class Chatbot():
    
    def parse_paper(self, pdf):
        # This function parses the PDF and returns a list of dictionaries with the text, 
        # font size, and x and y coordinates of each text element in the PDF
        print("Parsing paper")
        number_of_pages = len(pdf.pages)
        print(f"Total number of pages: {number_of_pages}")
        # This is the list that will contain all the text elements in the PDF and will be returned by the function
        paper_text = []
        
        for i in range(number_of_pages):
            # Iterate through each page in the PDF, and extract the text elements. pdf.pages is a list of Page objects.
            page = pdf.pages[i]
            # This is the list that will contain all the text elements in the current page
            page_text = []

            def visitor_body(text, cm, tm, fontDict, fontSize):
                # tm is a 6-element tuple of floats that represent a 2x3 matrix, which is the text matrix for the text.
                # The first two elements are the horizontal and vertical scaling factors, the third and fourth elements 
                # are the horizontal and vertical shear factors, and the fifth and sixth elements are the horizontal and vertical translation factors.
                
                # x and y are the coordinates of the text element
                x = tm[4]
                y = tm[5]
                
                # ignore header/footer, and empty text.
                # The y coordinate is used to filter out the header and footer of the paper
                # The length of the text is used to filter out empty text
                if (y > 50 and y < 720) and (len(text.strip()) > 1):
                    page_text.append({
                    # The fontsize is used to separate paragraphs into different elements in the paper_text list
                    'fontsize': fontSize,
                    # The text is stripped of whitespace and the \x03 character
                    'text': text.strip().replace('\x03', ''),
                    # The x and y coordinates are used to separate paragraphs into different elements in the paper_text list
                    'x': x,
                    'y': y
                    })

            # Extract the text elements from the page
            _ = page.extract_text(visitor_text=visitor_body)
            print(f'Page {i} text", {page_text}')

            
            blob_font_size = None
            blob_text = ''
            processed_text = []

            for t in page_text:
                if t['fontsize'] == blob_font_size:
                    blob_text += f" {t['text']}"
                    if len(blob_text) >= 2000:
                        processed_text.append({
                            'fontsize': blob_font_size,
                            'text': blob_text,
                            'page': i
                        })
                        blob_font_size = None
                        blob_text = ''
                else:
                    if blob_font_size is not None and len(blob_text) >= 1:
                        processed_text.append({
                            'fontsize': blob_font_size,
                            'text': blob_text,
                            'page': i
                        })
                    blob_font_size = t['fontsize']
                    blob_text = t['text']
                paper_text += processed_text
        print("Done parsing paper")
        print(paper_text)

        return paper_text

    def paper_df(self, pdf):
        print('Creating dataframe')
        filtered_pdf= []
        for row in pdf:
            # This will use the get method to safely access the 'text' key in the row dictionary, 
            # and if the key is not present, it will use an empty string as a default value. This 
            # should prevent a KeyError from occurring.
            if len(row.get('text', '')) < 30:
                continue
            filtered_pdf.append(row)
        print("Filtered paper_text", filtered_pdf)
        df = pd.DataFrame(filtered_pdf)
        print(df.shape)
        print(df.head)
        # remove elements with identical df[text] and df[page] values
        df = df.drop_duplicates(subset=['text', 'page'], keep='first')
        df['length'] = df['text'].apply(lambda x: len(x))
        print('Done creating dataframe')
        return df

    def calculate_embeddings(self, df):
        print('Calculating embeddings')
        openai.api_key = os.getenv('OPENAI_API_KEY')
        embedding_model = "text-embedding-ada-002"
        # This is going to create embeddings for subsets of the PDF
        embeddings = np.vstack(df.text.apply(lambda x: get_embedding(x, engine=embedding_model)))
        return embeddings    

    def search_embeddings(self, df, query, n=3, pprint=True):
        
        # Step 1. Get an embedding for the question being asked to the PDF
        query_embedding = get_embedding(
            query,
            engine="text-embedding-ada-002"
        )
        # Step 2. Create a FAISS index and add the embeddings
        d = embeddings.shape[1]
        # Use the L2 distance metric
        index = faiss.IndexFlatL2(d)
        index.add(embeddings)
        
        
        # Step 3. Search the index for the embedding of the question

        D, I = index.search(query_embedding.reshape(1,d), n)        
        
        # Step 4. Get the top n results from the dataframe
        results = df.iloc[I[0]]
        results['similarity'] = D[0]
        results = results.reset_index(drop=True)
        
        # Make a dictionary of the first n results with the page number as the key and the text as the value
        
        global sources 
        sources = []
        for i in range(n):
            # append the page number and the text as a dict to the sources list
            sources.append({'Page '+str(results.iloc[i]['page']): results.iloc[i]['text'][:150]+'...'})
        print(sources)
        return results.head(n)
    
    def create_prompt(self, df, user_input):
        result = self.search_embeddings(df, user_input, n=3)
        print(result)
        prompt = """You are a large language model whose expertise is reading and and providing answers about research papers. 
        You are given a query and a series of text embeddings from a paper in order of their cosine similarity to the query.
        You must take the given embeddings, as well as what you know from your model weights and knowledge of various fields of research to provide an answer to the query
        that lines up with what was provided in the text.
            
            Given the question: """+ user_input + """
            
            and the following embeddings as data: 
            
            1.""" + str(result.iloc[0]['text']) + """
            2.""" + str(result.iloc[1]['text']) + """
            3.""" + str(result.iloc[2]['text']) + """

            Return a detailed answer based on the paper. If the person asks you to summarize what is in the paper, do your best to provide a summary of the paper.:"""

        print('Done creating prompt')
        return prompt

    def gpt(self, prompt):
        openai.api_key = os.getenv('OPENAI_API_KEY')
        print('got API key')
        messages.append({"role": "user", "content": prompt})
        r = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
        answer = r['choices'][0]['message']['content']
        response = {'answer': answer, 'sources': sources}
        return response

    def reply(self, prompt):
        print(prompt)
        prompt = self.create_prompt(df, prompt)
        return self.gpt(prompt)

def process_pdf(file):
    print("Processing pdf")
    pdf = PdfReader(BytesIO(file))
    chatbot = Chatbot()
    paper_text = chatbot.parse_paper(pdf)
    global df
    df = chatbot.paper_df(paper_text)
    df = chatbot.calculate_embeddings(df)
    print("Done processing pdf")

def download_pdf(url):
    chatbot = Chatbot()
    r = requests.get(str(url))
    print(r.headers)
    pdf = PdfReader(BytesIO(r.content))
    paper_text = chatbot.parse_paper(pdf)
    global df
    df = chatbot.paper_df(paper_text)
    df = chatbot.calculate_embeddings(df)
    print("Done processing pdf")

def show_pdf(file_content):
    base64_pdf = base64.b64encode(file_content).decode('utf-8')
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="800" height="800" type="application/pdf"></iframe>'
    st.markdown(pdf_display, unsafe_allow_html=True)


def main():
    st.title("Research Paper Guru")
    st.subheader("Ask a question about a research paper and get an answer with sources!")
    st.subheader("Upload PDF or Enter URL")
    
    pdf_option = st.selectbox("Choose an option:", ["Upload PDF", "Enter URL"])
    chatbot = Chatbot()

    if pdf_option == "Upload PDF":
        uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
        if uploaded_file is not None:
            file_content = uploaded_file.read()
            process_pdf(file_content)
            st.success("PDF uploaded and processed successfully!")
            show_pdf(file_content)

    elif pdf_option == "Enter URL":
        url = st.text_input("Enter the URL of the PDF:")
        if url:
            if st.button("Download and process PDF"):
                try:
                    r = requests.get(str(url))
                    content = r.content
                    download_pdf(url)
                    st.success("PDF downloaded and processed successfully!")
                    show_pdf(content)
                except Exception as e:
                    st.error(f"An error occurred while processing the PDF: {e}")

    query = st.text_input("Enter your query:")
    if query:
        if st.button("Get answer"):
            response = chatbot.reply(query)
            st.write(response['answer'])
            st.write("Sources:")
            for source in response['sources']:
                st.write(source)

if __name__ == "__main__":
    main()