Spaces:
Runtime error
Runtime error
import cv2.detail | |
import numpy as np | |
def judge_layout(input_width, input_height, PHOTO_INTERVAL_W, PHOTO_INTERVAL_H, LIMIT_BLOCK_W, LIMIT_BLOCK_H): | |
centerBlockHeight_1, centerBlockWidth_1 = input_height, input_width # 由证件照们组成的一个中心区块(1代表不转置排列) | |
centerBlockHeight_2, centerBlockWidth_2 = input_width, input_height # 由证件照们组成的一个中心区块(2代表转置排列) | |
# 1.不转置排列的情况下: | |
layout_col_no_transpose = 0 # 行 | |
layout_row_no_transpose = 0 # 列 | |
for i in range(1, 4): | |
centerBlockHeight_temp = input_height * i + PHOTO_INTERVAL_H * (i-1) | |
if centerBlockHeight_temp < LIMIT_BLOCK_H: | |
centerBlockHeight_1 = centerBlockHeight_temp | |
layout_row_no_transpose = i | |
else: | |
break | |
for j in range(1, 9): | |
centerBlockWidth_temp = input_width * j + PHOTO_INTERVAL_W * (j-1) | |
if centerBlockWidth_temp < LIMIT_BLOCK_W: | |
centerBlockWidth_1 = centerBlockWidth_temp | |
layout_col_no_transpose = j | |
else: | |
break | |
layout_number_no_transpose = layout_row_no_transpose*layout_col_no_transpose | |
# 2.转置排列的情况下: | |
layout_col_transpose = 0 # 行 | |
layout_row_transpose = 0 # 列 | |
for i in range(1, 4): | |
centerBlockHeight_temp = input_width * i + PHOTO_INTERVAL_H * (i-1) | |
if centerBlockHeight_temp < LIMIT_BLOCK_H: | |
centerBlockHeight_2 = centerBlockHeight_temp | |
layout_row_transpose = i | |
else: | |
break | |
for j in range(1, 9): | |
centerBlockWidth_temp = input_height * j + PHOTO_INTERVAL_W * (j-1) | |
if centerBlockWidth_temp < LIMIT_BLOCK_W: | |
centerBlockWidth_2 = centerBlockWidth_temp | |
layout_col_transpose = j | |
else: | |
break | |
layout_number_transpose = layout_row_transpose*layout_col_transpose | |
if layout_number_transpose > layout_number_no_transpose: | |
layout_mode = (layout_col_transpose, layout_row_transpose, 2) | |
return layout_mode, centerBlockWidth_2, centerBlockHeight_2 | |
else: | |
layout_mode = (layout_col_no_transpose, layout_row_no_transpose, 1) | |
return layout_mode, centerBlockWidth_1, centerBlockHeight_1 | |
def generate_layout_photo(input_height, input_width): | |
# 1.基础参数表 | |
LAYOUT_WIDTH = 1746 | |
LAYOUT_HEIGHT = 1180 | |
PHOTO_INTERVAL_H = 30 # 证件照与证件照之间的垂直距离 | |
PHOTO_INTERVAL_W = 30 # 证件照与证件照之间的水平距离 | |
SIDES_INTERVAL_H = 50 # 证件照与画布边缘的垂直距离 | |
SIDES_INTERVAL_W = 70 # 证件照与画布边缘的水平距离 | |
LIMIT_BLOCK_W = LAYOUT_WIDTH - 2*SIDES_INTERVAL_W | |
LIMIT_BLOCK_H = LAYOUT_HEIGHT - 2*SIDES_INTERVAL_H | |
# 2.创建一个1180x1746的空白画布 | |
white_background = np.zeros([LAYOUT_HEIGHT, LAYOUT_WIDTH, 3], np.uint8) | |
white_background.fill(255) | |
# 3.计算照片的layout(列、行、横竖朝向),证件照组成的中心区块的分辨率 | |
layout_mode, centerBlockWidth, centerBlockHeight = judge_layout(input_width, input_height, PHOTO_INTERVAL_W, | |
PHOTO_INTERVAL_H, LIMIT_BLOCK_W, LIMIT_BLOCK_H) | |
# 4.开始排列组合 | |
x11 = (LAYOUT_WIDTH - centerBlockWidth)//2 | |
y11 = (LAYOUT_HEIGHT - centerBlockHeight)//2 | |
typography_arr = [] | |
typography_rotate = False | |
if layout_mode[2] == 2: | |
input_height, input_width = input_width, input_height | |
typography_rotate = True | |
for j in range(layout_mode[1]): | |
for i in range(layout_mode[0]): | |
xi = x11 + i*input_width + i*PHOTO_INTERVAL_W | |
yi = y11 + j*input_height + j*PHOTO_INTERVAL_H | |
typography_arr.append([xi, yi]) | |
return typography_arr, typography_rotate | |
def generate_layout_image(input_image, typography_arr, typography_rotate, width=295, height=413): | |
LAYOUT_WIDTH = 1746 | |
LAYOUT_HEIGHT = 1180 | |
white_background = np.zeros([LAYOUT_HEIGHT, LAYOUT_WIDTH, 3], np.uint8) | |
white_background.fill(255) | |
if input_image.shape[0] != height: | |
input_image = cv2.resize(input_image, (width, height)) | |
if typography_rotate: | |
input_image = cv2.transpose(input_image) | |
height, width = width, height | |
for arr in typography_arr: | |
locate_x, locate_y = arr[0], arr[1] | |
white_background[locate_y:locate_y+height, locate_x:locate_x+width] = input_image | |
return white_background | |
if __name__ == "__main__": | |
typography_arr, typography_rotate = generate_layout_photo(input_height=413, input_width=295) | |
print("typography_arr:", typography_arr) | |
print("typography_rotate:", typography_rotate) | |
result_image = generate_layout_image(cv2.imread("./32.jpg"), typography_arr, typography_rotate, width=295, height=413) | |
cv2.imwrite("./result_image.jpg", result_image) | |