|
import gradio as gr |
|
import models |
|
import pandas as pd |
|
import theme |
|
import matplotlib.pyplot as plt |
|
|
|
text = "<h1 style='text-align: center; color: #333333; font-size: 40px;'>TCO Comparison Calculator" |
|
text2 = "Please note that the cost/request only defines the infrastructure cost for deployment. The labor cost must be added for the whole AI model service deployment TCO." |
|
description=f""" |
|
<p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment.</p> |
|
<p>Please note that we focus on getting the service up and running, but not the maintenance that follows.</p> |
|
""" |
|
|
|
def on_use_case_change(use_case): |
|
if use_case == "Summarize": |
|
return gr.update(value=500), gr.update(value=200) |
|
elif use_case == "Question-Answering": |
|
return gr.update(value=300), gr.update(value=300) |
|
else: |
|
return gr.update(value=50), gr.update(value=10) |
|
|
|
def compare_info(tco1, tco2, dropdown, dropdown2): |
|
|
|
services = [dropdown, dropdown2] |
|
costs_to_compare = [tco1, tco2] |
|
|
|
plt.figure(figsize=(6, 4)) |
|
plt.bar(services, costs_to_compare, color=['red', 'green']) |
|
plt.xlabel('AI option services', fontsize=10) |
|
plt.ylabel('($) Cost/Request', fontsize=10) |
|
plt.title('Comparison of Cost/Request', fontsize=14) |
|
|
|
|
|
|
|
|
|
|
|
plt.tight_layout() |
|
plt.savefig('cost_comparison.png') |
|
|
|
return gr.update(value='cost_comparison.png') |
|
|
|
def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2): |
|
list_values = [] |
|
first_sol = [tco1, labor_cost1, latency] |
|
second_sol = [tco2, labor_cost2, latency2] |
|
list_values.append(first_sol) |
|
list_values.append(second_sol) |
|
|
|
data = pd.DataFrame(list_values, index=[dropdown, dropdown2], columns=["Cost/request ($) ", "Labor Cost ($/month)", "Average latency (s)"]) |
|
|
|
formatted_data = data.copy() |
|
formatted_data["Cost/request ($) "] = formatted_data["Cost/request ($) "].apply('{:.5f}'.format) |
|
formatted_data["Labor Cost ($/month)"] = formatted_data["Labor Cost ($/month)"].apply('{:.0f}'.format) |
|
|
|
styled_data = formatted_data.style\ |
|
.set_properties(**{'background-color': '#ffffff', 'color': '#000000', 'border-color': '#e0e0e0', 'border-width': '1px', 'border-style': 'solid'})\ |
|
.to_html() |
|
centered_styled_data = f"<center>{styled_data}</center>" |
|
|
|
return gr.update(value=centered_styled_data) |
|
|
|
def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2): |
|
|
|
request_ranges = list(range(0, 1001, 100)) + list(range(1000, 10001, 500)) + list(range(10000, 100001, 1000)) + list(range(100000, 2000001, 100000)) |
|
costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges] |
|
costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges] |
|
|
|
data = pd.DataFrame({ |
|
"Number of requests": request_ranges * 2, |
|
"Cost ($)": costs_tco1 + costs_tco2, |
|
"AI model service": ["1)" + " " + dropdown] * len(request_ranges) + ["2)" + " " + dropdown2] * len(request_ranges) |
|
} |
|
) |
|
return gr.LinePlot.update(data, visible=True, x="Number of requests", y="Cost ($)",color="AI model service",color_legend_position="bottom", title="Set-up TCO for one month", height=300, width=500, tooltip=["Number of requests", "Cost ($)", "AI model service"]) |
|
|
|
style = theme.Style() |
|
|
|
with gr.Blocks(theme=style) as demo: |
|
Models: list[models.BaseTCOModel] = [models.OpenAIModel, models.CohereModel, models.OpenSourceLlama2Model] |
|
model_names = [Model().get_name() for Model in Models] |
|
gr.Markdown(value=text) |
|
gr.Markdown(value=description) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
use_case = gr.Dropdown(["Summarize", "Question-Answering", "Classification"], value="Question-Answering", label=" Describe your use case ") |
|
with gr.Accordion("Click here if you want to customize the number of input and output tokens per request", open=False): |
|
with gr.Row(): |
|
input_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Input tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True) |
|
output_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Output tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True) |
|
with gr.Row(visible=False): |
|
num_users = gr.Number(value="1000", interactive = True, label=" Number of users for your service ") |
|
|
|
use_case.change(on_use_case_change, inputs=use_case, outputs=[input_tokens, output_tokens]) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
page1 = models.ModelPage(Models) |
|
dropdown = gr.Dropdown(model_names, interactive=True, label=" First AI service option ") |
|
with gr.Accordion("Click here for more information on the computation parameters for your first AI service option", open=False): |
|
page1.render() |
|
|
|
with gr.Column(): |
|
page2 = models.ModelPage(Models) |
|
dropdown2 = gr.Dropdown(model_names, interactive=True, label=" Second AI service option ") |
|
with gr.Accordion("Click here for more information on the computation parameters for your second AI service option", open=False): |
|
page2.render() |
|
|
|
dropdown.change(page1.make_model_visible, inputs=[dropdown, use_case], outputs=page1.get_all_components()) |
|
dropdown2.change(page2.make_model_visible, inputs=[dropdown2, use_case], outputs=page2.get_all_components()) |
|
|
|
compute_tco_btn = gr.Button("Compute & Compare", size="lg", variant="primary", scale=1) |
|
tco1 = gr.State() |
|
tco2 = gr.State() |
|
labor_cost1 = gr.State() |
|
labor_cost2 = gr.State() |
|
latency = gr.State() |
|
latency2 = gr.State() |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Click here to see the cost/request computation formula", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
tco_formula = gr.Markdown() |
|
with gr.Column(): |
|
tco_formula2 = gr.Markdown() |
|
|
|
with gr.Row(variant='panel'): |
|
with gr.Column(): |
|
with gr.Row(): |
|
table = gr.Markdown() |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image = gr.Image() |
|
info = gr.Markdown(text2) |
|
with gr.Column(scale=2): |
|
plot = gr.LinePlot(visible=False) |
|
|
|
compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown, input_tokens, output_tokens], outputs=[tco1, tco_formula, latency, labor_cost1]).then(page2.compute_cost_per_token, inputs=page2.get_all_components_for_cost_computing() + [dropdown2, input_tokens, output_tokens], outputs=[tco2, tco_formula2, latency2, labor_cost2]).then(create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2], outputs=table).then(compare_info, inputs=[tco1, tco2, dropdown, dropdown2], outputs=image).then(update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labor_cost1, labor_cost2], outputs=plot) |
|
|
|
demo.launch(debug=True) |