File size: 2,975 Bytes
d347764
 
 
 
 
a74e1f6
d347764
 
 
 
 
 
 
 
a74e1f6
d347764
a74e1f6
 
 
 
 
d347764
 
 
 
 
 
a74e1f6
d347764
 
 
 
a74e1f6
 
 
80cb38e
a74e1f6
80cb38e
d347764
 
 
 
 
a74e1f6
d347764
 
 
 
 
f805e49
 
a74e1f6
 
f805e49
 
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")

# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

model = VitsModel.from_pretrained('facebook/mms-tts-ron')
tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-ron')

embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "ro"})
    return outputs["text"]


def synthesise(text):
    inputs = tokenizer(text=text, return_tensors="pt")
    # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    with torch.no_grad():
        tts_output = model(inputs['input_ids'].to(device))

    speech = tts_output['waveform']
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    print(translated_text)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Romanian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
[MMS-TTS-RON](https://huggingface.co/facebook/mms-tts-ron) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()