File size: 8,002 Bytes
2ddf3fe 50a5992 2ddf3fe 0412962 2ddf3fe 50a5992 2ddf3fe 50a5992 0412962 50a5992 0412962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# @title Define funcs
import torch
import torchaudio
from typing import Callable, List
import torch.nn.functional as F
import warnings
import pandas as pd
from matplotlib import pyplot as plt
def get_speech_probs(audio: torch.Tensor,
# model,
threshold: float = 0.5,
sampling_rate: int = 16000,
window_size_samples: int = 512,
progress_tracking_callback: Callable[[float], None] = None):
if not torch.is_tensor(audio):
try:
audio = torch.Tensor(audio)
except:
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
if len(audio.shape) > 1:
for i in range(len(audio.shape)): # trying to squeeze empty dimensions
audio = audio.squeeze(0)
if len(audio.shape) > 1:
raise ValueError("More than one dimension in audio. Are you trying to process audio with 2 channels?")
if sampling_rate > 16000 and (sampling_rate % 16000 == 0):
step = sampling_rate // 16000
sampling_rate = 16000
audio = audio[::step]
warnings.warn('Sampling rate is a multiply of 16000, casting to 16000 manually!')
else:
step = 1
if sampling_rate == 8000 and window_size_samples > 768:
warnings.warn('window_size_samples is too big for 8000 sampling_rate! Better set window_size_samples to 256, 512 or 768 for 8000 sample rate!')
if window_size_samples not in [256, 512, 768, 1024, 1536]:
warnings.warn('Unusual window_size_samples! Supported window_size_samples:\n - [512, 1024, 1536] for 16000 sampling_rate\n - [256, 512, 768] for 8000 sampling_rate')
model.reset_states()
audio_length_samples = len(audio)
speech_probs = []
for current_start_sample in range(0, audio_length_samples, window_size_samples):
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
if len(chunk) < window_size_samples:
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
speech_prob = model(chunk, sampling_rate).item()
speech_probs.append(speech_prob)
# caculate progress and seng it to callback function
progress = current_start_sample + window_size_samples
if progress > audio_length_samples:
progress = audio_length_samples
progress_percent = (progress / audio_length_samples) * 100
if progress_tracking_callback:
progress_tracking_callback(progress_percent)
return speech_probs
def probs2speech_timestamps(speech_probs, audio_length_samples,
threshold: float = 0.5,
sampling_rate: int = 16000,
min_speech_duration_ms: int = 250,
max_speech_duration_s: float = float('inf'),
min_silence_duration_ms: int = 100,
window_size_samples: int = 512,
speech_pad_ms: int = 30,
return_seconds: bool = False,
rounding: int = 1,):
step = sampling_rate // 16000
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
max_speech_samples = sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
triggered = False
speeches = []
current_speech = {}
neg_threshold = threshold - 0.15
temp_end = 0 # to save potential segment end (and tolerate some silence)
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
for i, speech_prob in enumerate(speech_probs):
if (speech_prob >= threshold) and temp_end:
temp_end = 0
if next_start < prev_end:
next_start = window_size_samples * i
if (speech_prob >= threshold) and not triggered:
triggered = True
current_speech['start'] = window_size_samples * i
continue
if triggered and (window_size_samples * i) - current_speech['start'] > max_speech_samples:
if prev_end:
current_speech['end'] = prev_end
speeches.append(current_speech)
current_speech = {}
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
triggered = False
else:
current_speech['start'] = next_start
prev_end = next_start = temp_end = 0
else:
current_speech['end'] = window_size_samples * i
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
continue
if (speech_prob < neg_threshold) and triggered:
if not temp_end:
temp_end = window_size_samples * i
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech : # condition to avoid cutting in very short silence
prev_end = temp_end
if (window_size_samples * i) - temp_end < min_silence_samples:
continue
else:
current_speech['end'] = temp_end
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
continue
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
current_speech['end'] = audio_length_samples
speeches.append(current_speech)
for i, speech in enumerate(speeches):
if i == 0:
speech['start'] = int(max(0, speech['start'] - speech_pad_samples))
if i != len(speeches) - 1:
silence_duration = speeches[i+1]['start'] - speech['end']
if silence_duration < 2 * speech_pad_samples:
speech['end'] += int(silence_duration // 2)
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - silence_duration // 2))
else:
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - speech_pad_samples))
else:
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
if return_seconds:
for speech_dict in speeches:
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, rounding)
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, rounding)
elif step > 1:
for speech_dict in speeches:
speech_dict['start'] *= step
speech_dict['end'] *= step
return speeches
def make_visualization(probs, step):
fig, ax = plt.subplots(figsize=(16, 8),)
pd.DataFrame({'probs': probs},
index=[x * step for x in range(len(probs))]).plot(ax = ax,
kind='area', ylim=[0, 1.05], xlim=[0, len(probs) * step],
xlabel='seconds',
ylabel='speech probability',
colormap='tab20')
return fig
torch.set_num_threads(1)
USE_ONNX = True # change this to True if you want to test onnx model
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
# force_reload=True,
onnx=USE_ONNX)
(_,
_, read_audio,
*_) = utils |