File size: 917 Bytes
5454af5
6d8a5b6
5454af5
6d8a5b6
 
4ae8bae
75e4b7c
15d18c4
3c97a0a
15d18c4
6d8a5b6
79be51e
6d8a5b6
 
d45b0ff
75e4b7c
15d18c4
75e4b7c
c9e5fc0
6d8a5b6
 
313c320
15d18c4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import streamlit as st
from transformers import pipeline

# Create a text2text-generation pipeline
pipe = pipeline("text2text-generation", model="kaist-ai/prometheus-13b-v1.0")

st.title("Text Classification Model")
uploaded_file = st.file_uploader("Upload an image:")

if uploaded_file is not None:
    # Read the uploaded image
    image = Image.open(uploaded_file)

    # Extract text from the image using OCR
    ocr_results = extract_text(image)
    extracted_text = " ".join([res[1] for res in ocr_results])
    st.markdown("**Extracted text:**")
    st.markdown(extracted_text)

    # Generate an explanation for the extracted text using the Hugging Face pipeline
    explanation = pipe(extracted_text, max_length=100, do_sample=True)[0]["generated_text"]
    st.markdown("**Explanation:**")
    st.markdown(explanation)

else:
    st.markdown("Please upload an image to extract text and get an explanation.")