File size: 9,597 Bytes
66ededb 97b7e88 66ededb 97b7e88 66ededb 97b7e88 66ededb 97b7e88 753da27 9798ca5 97b7e88 66ededb 97b7e88 66ededb f442c21 97b7e88 f442c21 66ededb f442c21 97b7e88 f442c21 66ededb 9798ca5 66ededb 753da27 66ededb f442c21 9798ca5 f442c21 753da27 f442c21 66ededb f442c21 a8af462 754fe61 f442c21 46b2f47 66ededb 754fe61 a8af462 f442c21 9519fdf 66ededb 46b2f47 f442c21 56138b3 f442c21 66ededb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
import random
import re
import gradio as gr
# hyperparameters
batch_size = 16 # how many independent sequences will we process in parallel?
block_size = 32 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 100
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 64
n_head = 4
n_layer = 4
dropout = 0.0
# ------------
torch.manual_seed(1337)
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
# super simple bigram model
class BigramLanguageModel(nn.Module):
def __init__(self, dataset_text, n_embd):
super().__init__()
# Compute character-related parameters
self.chars = sorted(list(set(dataset_text)))
self.vocab_size = len(self.chars)
self.stoi = {ch: i for i, ch in enumerate(self.chars)}
self.itos = {i: ch for ch, i in self.stoi.items()}
self.token_embedding_table = nn.Embedding(self.vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, self.vocab_size)
self.encode = lambda s: [self.stoi[c] for c in s] # encoder: take a string, output a list of integers
self.decode = lambda l: ''.join([self.itos[i] for i in l]) # decoder: take a list of integers, output a string
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
# Reading shakespeare data
with open('input.txt', 'r', encoding='utf-8') as f:
shakespeare_text = f.read()
# Reading wikipedia data
DATA_PATH = 'wikisent2.txt'
# load wikipedia sentences
with open(DATA_PATH, 'r') as f:
lines = f.read().splitlines()
# Selecting 250k lines from the dataset.
random.seed(42)
texts = random.choices(lines, k=250000)
del lines
def preprocess(text):
text = re.sub('@.*?\s+', '', text) # Remove mentions
text = re.sub('#.*?\s+', '', text) # Remove hashtags
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text) # Remove URLs
text = re.sub(r'[^\w\s\'.]', '', text) # Remove special characters except for single quotes and periods
text = re.sub('\s+', ' ', text) # Replace multiple spaces with a single space
text = re.sub('^\d+\s*|^\d+\.\d+\s*|^\d+\.\d+\.\d+\s*', '', text) # Remove digits at the start of sentences
text = text.strip() # Remove leading and trailing whitespace
return text
wiki_text = [preprocess(t) for t in texts]
wiki_text = '\n'.join(wiki_text)
# Load the shakespeaere model
shakespeare_model = BigramLanguageModel(shakespeare_text, n_embd).to(device) # Initialize an instance of your model
shakespeare_model.load_state_dict(torch.load('shakespeaere_language_model.pth', map_location=torch.device('cpu')))
shakespeare_model.eval() # Set the model to evaluation mode
# Load the wikipedia model
wikipedia_model = BigramLanguageModel(wiki_text, n_embd).to(device) # Initialize an instance of your model
wikipedia_model.load_state_dict(torch.load('wikipedia_language_model.pth', map_location=torch.device('cpu')))
wikipedia_model.eval() # Set the model to evaluation mode
def generate_shakespeare_outputs(prompt=None, max_new_tokens=2000):
if prompt:
context = torch.tensor(shakespeare_model.encode(prompt), dtype=torch.long, device=device).view(1, -1)
else:
context = torch.zeros((1, 1), dtype=torch.long, device=device)
text_output = shakespeare_model.decode(shakespeare_model.generate(context, max_new_tokens=max_new_tokens)[0].tolist())
return text_output
def generate_wikipedia_outputs(prompt=None, max_new_tokens=2000):
if prompt:
context = torch.tensor(wikipedia_model.encode(prompt), dtype=torch.long, device=device).view(1, -1)
else:
context = torch.zeros((1, 1), dtype=torch.long, device=device)
text_output = wikipedia_model.decode(wikipedia_model.generate(context, max_new_tokens=max_new_tokens)[0].tolist())
return text_output
title = "Nano GPT"
description1 = "Nano GPT trained on <a href='https://www.kaggle.com/datasets/mikeortman/wikipedia-sentences'>Shakespeare dataset</a>. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"
shakespeare_interface = gr.Interface(generate_shakespeare_outputs,
inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
outputs=gr.Textbox(label="Output generated", type="text"), description=description1)
description2 = "Nano GPT trained on <a href='https://github.com/karpathy/char-rnn/blob/6f9487a6fe5b420b7ca9afb0d7c078e37c1d1b4e/data/tinyshakespeare/input.txt'>Wikipedia dataset</a>. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"
wiki_interface = gr.Interface(generate_wikipedia_outputs,
inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="James Bond"),
gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
outputs=gr.Textbox(label="Output generated", type="text"), description=description2)
demo = gr.TabbedInterface([shakespeare_interface, wiki_interface], tab_names=["Shakespeare Data", "Wikipedia Data"],
title=title)
demo.launch()
|