File size: 26,414 Bytes
065051d
76254b2
08e0095
76254b2
25d9773
305fb83
08e0095
76254b2
f51bffc
 
 
 
73f00f5
f51bffc
 
305fb83
76254b2
065051d
76254b2
b59fcf5
76254b2
32e1bb2
937ed20
 
1f3c19d
48836d3
edba6fe
 
 
 
32e1bb2
edba6fe
 
6b6c0db
edba6fe
 
 
1f3c19d
 
 
 
 
 
 
6b6c0db
 
 
 
 
 
 
 
 
76254b2
 
1ba4f32
08e0095
76254b2
 
 
 
 
cf834f9
76254b2
 
 
f51bffc
8545c27
b59fcf5
08e0095
b59fcf5
 
d09f003
6b6c0db
b59fcf5
 
f51bffc
8545c27
065051d
6b6c0db
48836d3
8545c27
 
 
f51bffc
8545c27
48836d3
b59fcf5
 
76254b2
f51bffc
357d42c
48836d3
357d42c
 
 
 
 
48836d3
357d42c
 
 
 
1ba4f32
 
 
 
 
 
1f3c19d
48836d3
6b6c0db
079ef2d
1f3c19d
 
6b6c0db
357d42c
f51bffc
357d42c
f51bffc
 
08e0095
 
f51bffc
 
08e0095
 
f51bffc
08e0095
 
 
 
 
 
d09f003
1f3c19d
 
 
 
 
 
 
 
 
 
08e0095
 
 
 
 
 
 
 
 
 
48836d3
 
 
 
 
 
 
 
f51bffc
6b6c0db
08e0095
 
f51bffc
 
 
 
 
 
305fb83
065051d
 
305fb83
 
f51bffc
 
48836d3
 
 
73f00f5
 
 
 
48836d3
 
 
73f00f5
48836d3
 
 
 
73f00f5
 
 
 
 
 
 
 
 
 
f51bffc
 
 
6b6c0db
 
f51bffc
 
 
 
48836d3
08e0095
f51bffc
 
 
 
 
 
08e0095
f51bffc
 
6b6c0db
 
f51bffc
 
 
 
08e0095
 
 
 
 
 
 
f51bffc
 
357d42c
08e0095
f51bffc
08e0095
f51bffc
 
 
 
 
 
357d42c
f51bffc
 
357d42c
 
f51bffc
08e0095
357d42c
 
 
 
08e0095
357d42c
 
 
 
f51bffc
 
357d42c
 
 
6b6c0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f003
6b6c0db
 
d09f003
6b6c0db
 
d09f003
6b6c0db
 
 
d09f003
6b6c0db
 
 
 
065051d
2c184b3
1f3c19d
3ae9358
065051d
edba6fe
48836d3
1ba4f32
 
 
48836d3
 
 
 
eba16a4
02077db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48836d3
08e0095
d09f003
08e0095
d09f003
 
 
08e0095
48836d3
08e0095
48836d3
08e0095
 
 
 
48836d3
08e0095
 
48836d3
d09f003
6b6c0db
 
 
48836d3
065051d
48836d3
02077db
065051d
 
48836d3
73f00f5
6b6c0db
d09f003
065051d
 
6b6c0db
 
 
065051d
 
6b6c0db
 
48836d3
1f3c19d
6b6c0db
 
 
48836d3
6b6c0db
 
 
 
48836d3
 
 
 
 
 
 
 
 
6b6c0db
 
 
02077db
6b6c0db
73f00f5
6b6c0db
 
 
 
 
 
 
 
 
d09f003
48836d3
d09f003
 
 
 
 
 
 
6b6c0db
 
 
48836d3
6b6c0db
 
 
48836d3
065051d
 
 
 
 
6b6c0db
 
 
 
48836d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f003
 
 
6b6c0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e6b382
1ba4f32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
from typing import AnyStr, Dict

import itertools
import streamlit as st
import en_core_web_lg

import torch.nn.parameter
from bs4 import BeautifulSoup
import numpy as np
import base64

from spacy_streamlit.util import get_svg
from streamlit.proto.SessionState_pb2 import SessionState

from custom_renderer import render_sentence_custom
from sentence_transformers import SentenceTransformer

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import os

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; 
margin-bottom: 2.5rem">{}</div> """


@st.experimental_singleton
def get_sentence_embedding_model():
    return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')


@st.experimental_singleton
def get_spacy():
    nlp = en_core_web_lg.load()
    return nlp


@st.experimental_singleton
def get_transformer_pipeline():
    tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
    model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
    return pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)


@st.experimental_singleton
def get_summarizer_model():
    model_name = 'google/pegasus-cnn_dailymail'
    summarizer_model = pipeline("summarization", model=model_name, tokenizer=model_name,
                                device=0 if torch.cuda.is_available() else -1)

    return summarizer_model


# Page setup
st.set_page_config(
    page_title="📜 Hallucination detection in summaries 📜",
    page_icon="",
    layout="centered",
    initial_sidebar_state="auto",
    menu_items={
        'Get help': None,
        'Report a bug': None,
        'About': None,
    }
)


def list_all_article_names() -> list:
    filenames = []
    for file in sorted(os.listdir('./sample-articles/')):
        if file.endswith('.txt'):
            filenames.append(file.replace('.txt', ''))
    # Append free use possibility:
    filenames.append("Provide your own input")
    return filenames


def fetch_article_contents(filename: str) -> AnyStr:
    if filename == "Provide your own input":
        return " "
    with open(f'./sample-articles/{filename}.txt', 'r') as f:
        data = f.read()
    return data


def fetch_summary_contents(filename: str) -> AnyStr:
    with open(f'./sample-summaries/{filename}.txt', 'r') as f:
        data = f.read()
    return data


def fetch_entity_specific_contents(filename: str) -> AnyStr:
    with open(f'./entity-specific-text/{filename}.txt', 'r') as f:
        data = f.read()
    return data


def fetch_dependency_specific_contents(filename: str) -> AnyStr:
    with open(f'./dependency-specific-text/{filename}.txt', 'r') as f:
        data = f.read()
    return data


def fetch_ranked_summaries(filename: str, ranknumber: int) -> AnyStr:
    with open(f'./ranked-summaries/{filename}/Rank{ranknumber}.txt', 'r') as f:
        data = f.read()
    return data


def fetch_dependency_svg(filename: str) -> AnyStr:
    with open(f'./dependency-images/{filename}.txt', 'r') as f:
        lines = [line.rstrip() for line in f]
    return lines


def display_summary(summary_content: str):
    st.session_state.summary_output = summary_content
    soup = BeautifulSoup(summary_content, features="html.parser")
    return HTML_WRAPPER.format(soup)


def get_all_entities_per_sentence(text):
    doc = nlp(text)

    sentences = list(doc.sents)

    entities_all_sentences = []
    for sentence in sentences:
        entities_this_sentence = []

        # SPACY ENTITIES
        for entity in sentence.ents:
            entities_this_sentence.append(str(entity))

        # FLAIR ENTITIES (CURRENTLY NOT USED)
        # sentence_entities = Sentence(str(sentence))
        # tagger.predict(sentence_entities)
        # for entity in sentence_entities.get_spans('ner'):
        #     entities_this_sentence.append(entity.text)

        # XLM ENTITIES
        entities_xlm = [entity["word"] for entity in ner_model(str(sentence))]
        for entity in entities_xlm:
            entities_this_sentence.append(str(entity))

        entities_all_sentences.append(entities_this_sentence)

    return entities_all_sentences


def get_all_entities(text):
    all_entities_per_sentence = get_all_entities_per_sentence(text)
    return list(itertools.chain.from_iterable(all_entities_per_sentence))


def get_and_compare_entities(first_time: bool):
    if first_time:
        article_content = st.session_state.article_text
        all_entities_per_sentence = get_all_entities_per_sentence(article_content)
        entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
        st.session_state.entities_article = entities_article
    else:
        entities_article = st.session_state.entities_article

    summary_content = st.session_state.summary_output
    all_entities_per_sentence = get_all_entities_per_sentence(summary_content)
    entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))

    matched_entities = []
    unmatched_entities = []
    for entity in entities_summary:
        if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
            matched_entities.append(entity)
        elif any(
                np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False),
                         sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for
                art_entity in entities_article):
            matched_entities.append(entity)
        else:
            unmatched_entities.append(entity)

    matched_entities = list(dict.fromkeys(matched_entities))
    unmatched_entities = list(dict.fromkeys(unmatched_entities))

    matched_entities_to_remove = []
    unmatched_entities_to_remove = []

    for entity in matched_entities:
        for substring_entity in matched_entities:
            if entity != substring_entity and entity.lower() in substring_entity.lower():
                matched_entities_to_remove.append(entity)

    for entity in unmatched_entities:
        for substring_entity in unmatched_entities:
            if entity != substring_entity and entity.lower() in substring_entity.lower():
                unmatched_entities_to_remove.append(entity)

    matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
    unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))

    for entity in matched_entities_to_remove:
        matched_entities.remove(entity)
    for entity in unmatched_entities_to_remove:
        unmatched_entities.remove(entity)

    return matched_entities, unmatched_entities


def highlight_entities():
    summary_content = st.session_state.summary_output
    markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
    markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
    markdown_end = "</mark>"

    matched_entities, unmatched_entities = get_and_compare_entities(True)

    for entity in matched_entities:
        summary_content = summary_content.replace(entity, markdown_start_green + entity + markdown_end)

    for entity in unmatched_entities:
        summary_content = summary_content.replace(entity, markdown_start_red + entity + markdown_end)
    soup = BeautifulSoup(summary_content, features="html.parser")
    return HTML_WRAPPER.format(soup)


def render_dependency_parsing(text: Dict):
    html = render_sentence_custom(text, nlp)
    html = html.replace("\n\n", "\n")
    st.write(get_svg(html), unsafe_allow_html=True)


def check_dependency(article: bool):
    if article:
        text = st.session_state.article_text
        all_entities = get_all_entities_per_sentence(text)
    else:
        text = st.session_state.summary_output
        all_entities = get_all_entities_per_sentence(text)
    doc = nlp(text)
    tok_l = doc.to_json()['tokens']
    test_list_dict_output = []

    sentences = list(doc.sents)
    for i, sentence in enumerate(sentences):
        start_id = sentence.start
        end_id = sentence.end
        for t in tok_l:
            if t["id"] < start_id or t["id"] > end_id:
                continue
            head = tok_l[t['head']]
            if t['dep'] == 'amod' or t['dep'] == "pobj":
                object_here = text[t['start']:t['end']]
                object_target = text[head['start']:head['end']]
                if t['dep'] == "pobj" and str.lower(object_target) != "in":
                    continue
                # ONE NEEDS TO BE ENTITY
                if object_here in all_entities[i]:
                    identifier = object_here + t['dep'] + object_target
                    test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
                                                  "target_word_index": (t['head'] - sentence.start),
                                                  "identifier": identifier, "sentence": str(sentence)})
                elif object_target in all_entities[i]:
                    identifier = object_here + t['dep'] + object_target
                    test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
                                                  "target_word_index": (t['head'] - sentence.start),
                                                  "identifier": identifier, "sentence": str(sentence)})
                else:
                    continue
    return test_list_dict_output


def render_svg(svg_file):
    with open(svg_file, "r") as f:
        lines = f.readlines()
        svg = "".join(lines)

        # """Renders the given svg string."""
        b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
        html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
        return html


def generate_abstractive_summary(text, type, min_len=120, max_len=512, **kwargs):
    text = text.strip().replace("\n", " ")
    if type == "top_p":
        text = summarization_model(text, min_length=min_len,
                                   max_length=max_len,
                                   top_k=50, top_p=0.95, clean_up_tokenization_spaces=True, truncation=True, **kwargs)
    elif type == "greedy":
        text = summarization_model(text, min_length=min_len,
                                   max_length=max_len, clean_up_tokenization_spaces=True, truncation=True, **kwargs)
    elif type == "top_k":
        text = summarization_model(text, min_length=min_len, max_length=max_len, top_k=50,
                                   clean_up_tokenization_spaces=True, truncation=True, **kwargs)
    elif type == "beam":
        text = summarization_model(text, min_length=min_len,
                                   max_length=max_len,
                                   clean_up_tokenization_spaces=True, truncation=True, **kwargs)
    summary = text[0]['summary_text'].replace("<n>", " ")
    return summary


# Load all different models (cached) at start time of the hugginface space
sentence_embedding_model = get_sentence_embedding_model()
ner_model = get_transformer_pipeline()
nlp = get_spacy()
summarization_model = get_summarizer_model()

# Page
st.title('📜 Hallucination detection 📜')
st.subheader("🔎 Detecting errors in generated abstractive summaries")
#st.title('📜 Error detection in summaries 📜')

# INTRODUCTION
st.header("🧑‍🏫 Introduction")

#introduction_checkbox = st.checkbox("Show introduction text", value=True)
#if introduction_checkbox:
st.markdown("""
Recent work using 🤖 **transformers** 🤖 on large text corpora has shown great success when fine-tuned on 
several different downstream NLP tasks. One such task is that of text summarization. The goal of text summarization 
is to generate concise and accurate summaries from input document(s). There are 2 types of summarization:

 - **Extractive summarization** merely copies informative fragments from the input
 - **Abstractive summarization** may generate novel words. A good abstractive summary should cover principal 
    information in the input and has to be linguistically fluent. This interactive blogpost will focus on this more difficult task of 
    abstractive summary generation. Furthermore we will focus on factual errors in summaries, and less sentence fluency.""")

st.markdown("###")
st.markdown("🤔 **Why is this important?** 🤔 Let's say we want to summarize news articles for a popular "
            "newspaper. If an article tells the story of Elon Musk buying **Twitter**, we don't want our summarization "
            "model to say that he bought **Facebook** instead. Summarization could also be done for financial reports "
            "for example. In such environments, these errors can be very critical, so we want to find a way to "
            "detect them.")
st.markdown("###")
st.markdown("""To generate summaries we will use the 🐎 [PEGASUS](https://huggingface.co/google/pegasus-cnn_dailymail) 🐎
model, producing abstractive summaries from large articles. These summaries often contain sentences with different 
kinds of errors. Rather than improving the core model, we will look into possible post-processing steps to detect errors 
from the generated summaries. Throughout this blog, we will also explain the results for some methods on specific 
examples. These text blocks will be indicated and they change according to the currently selected article.""")

# GENERATING SUMMARIES PART
st.header("🪶 Generating summaries")
st.markdown("Let’s start by selecting an article text for which we want to generate a summary, or you can provide "
            "text yourself. Note that it’s suggested to provide a sufficiently large article, as otherwise the "
            "summary generated from it might not be optimal, leading to suboptimal performance of the post-processing "
            "steps. However, too long articles will be truncated and might miss information in the summary.")

st.markdown("####")
selected_article = st.selectbox('Select an article or provide your own:',
                                list_all_article_names(), index=2)
st.session_state.article_text = fetch_article_contents(selected_article)
article_text = st.text_area(
    label='Full article text',
    value=st.session_state.article_text,
    height=250
)

summarize_button = st.button(label='🤯 Process article content',
                             help="Start interactive blogpost")

if summarize_button:
    st.session_state.article_text = article_text
    st.markdown("####")
    st.markdown(
        "*Below you can find the generated summary for the article. We will discuss two approaches that we found are "
        "able to detect some common errors. Based on these errors, one could then score different summaries, indicating how "
        "factual a summary is for a given article. The idea is that in production, you could generate a set of "
        "summaries for the same article, with different parameters (or even different models). By using "
        "post-processing error detection, we can then select the best possible summary.*")
    st.markdown("####")
    if st.session_state.article_text:
        with st.spinner('Generating summary, this might take a while...'):
            if selected_article != "Provide your own input" and article_text == fetch_article_contents(
                    selected_article):
                st.session_state.unchanged_text = True
                summary_content = fetch_summary_contents(selected_article)
            else:
                summary_content = generate_abstractive_summary(article_text, type="beam", do_sample=True, num_beams=15,
                                                               no_repeat_ngram_size=4)
                st.session_state.unchanged_text = False
            summary_displayed = display_summary(summary_content)
            st.write("✍ **Generated summary:** ✍", summary_displayed, unsafe_allow_html=True)
    else:
        st.error('**Error**: No comment to classify. Please provide a comment.')

    # ENTITY MATCHING PART
    st.header("1️⃣ Entity matching")
    st.markdown("The first method we will discuss is called **Named Entity Recognition** (NER). NER is the task of "
                "identifying and categorising key information (entities) in text. An entity can be a singular word or a "
                "series of words that consistently refers to the same thing. Common entity classes are person names, "
                "organisations, locations and so on. By applying NER to both the article and its summary, we can spot "
                "possible **hallucinations**. ")

    st.markdown("Hallucinations are words generated by the model that are not supported by "
                "the source input. Deep learning based generation is [prone to hallucinate]("
                "https://arxiv.org/pdf/2202.03629.pdf) unintended text. These hallucinations degrade "
                "system performance and fail to meet user expectations in many real-world scenarios. By applying entity matching, we can improve this problem"
                " for the downstream task of summary generation.")

    st.markdown(" In theory all entities in the summary (such as dates, locations and so on), "
                "should also be present in the article. Thus we can extract all entities from the summary and compare "
                "them to the entities of the original article, spotting potential hallucinations. The more unmatched "
                "entities we find, the lower the factualness score of the summary. ")
    with st.spinner("Calculating and matching entities, this takes about 10-20 seconds..."):
        entity_match_html = highlight_entities()
        st.markdown("####")
        st.write(entity_match_html, unsafe_allow_html=True)
        red_text = """<font color="black"><span style="background-color: rgb(238, 135, 135); opacity: 
        1;">red</span></font> """
        green_text = """<font color="black">
            <span style="background-color: rgb(121, 236, 121); opacity: 1;">green</span>
        </font>"""

        markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
        markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
        st.markdown(
            "We call this technique **entity matching** and here you can see what this looks like when we apply this "
            "method on the summary. Entities in the summary are marked  " + green_text + " when the entity also "
                                                                                         "exists in the article, "
                                                                                         "while unmatched entities "
                                                                                         "are marked " + red_text +
            ". Several of the example articles and their summaries indicate different errors we find by using this "
            "technique. Based on the current article, we provide a short explanation of the results below **(only for "
            "example articles)**. ", unsafe_allow_html=True)
        if st.session_state.unchanged_text:
            entity_specific_text = fetch_entity_specific_contents(selected_article)
            soup = BeautifulSoup(entity_specific_text, features="html.parser")
            st.markdown("####")
            st.write("💡👇 **Specific example explanation** 👇💡", HTML_WRAPPER.format(soup), unsafe_allow_html=True)

    # DEPENDENCY PARSING PART
    st.header("2️⃣ Dependency comparison")
    st.markdown(
        "The second method we use for post-processing is called **Dependency parsing**: the process in which the "
        "grammatical structure in a sentence is analysed, to find out related words as well as the type of the "
        "relationship between them. For the sentence “Jan’s wife is called Sarah” you would get the following "
        "dependency graph:")

    # TODO: I wonder why the first doesn't work but the second does (it doesn't show deps otherwise)
    # st.image("ExampleParsing.svg")
    st.write(render_svg('ExampleParsing.svg'), unsafe_allow_html=True)
    st.markdown(
        "Here, *“Jan”* is the *“poss”* (possession modifier) of *“wife”*. If suddenly the summary would read *“Jan’s"
        " husband…”*, there would be a dependency in the summary that is non-existent in the article itself (namely "
        "*“Jan”* is the “poss” of *“husband”*)."
        "However, often new dependencies are introduced in the summary that "
        "are still correct, as can be seen in the example below. ")
    st.write(render_svg('SecondExampleParsing.svg'), unsafe_allow_html=True)

    st.markdown("*“The borders of Ukraine”* have a different dependency between *“borders”* and "
                "*“Ukraine”* "
                "than *“Ukraine’s borders”*, while both descriptions have the same meaning. So just matching all "
                "dependencies between article and summary (as we did with entity matching) would not be a robust method."
                " More on the different sorts of dependencies and their description can be found [here](https://universaldependencies.org/docs/en/dep/).")
    st.markdown("However, we have found that **there are specific dependencies that are often an "
                "indication of a wrongly constructed sentence** -when there is no article match. We (currently) use 2 "
                "common dependencies which - when present in the summary but not in the article - are highly "
                "indicative of factualness errors. "
                "Furthermore, we only check dependencies between an existing **entity** and its direct connections. "
                "Below we highlight all unmatched dependencies that satisfy the discussed constraints. We also "
                "discuss the specific results for the currently selected example article.")
    with st.spinner("Doing dependency parsing..."):
        if st.session_state.unchanged_text:
            for cur_svg_image in fetch_dependency_svg(selected_article):
                st.write(cur_svg_image, unsafe_allow_html=True)
            dep_specific_text = fetch_dependency_specific_contents(selected_article)
            soup = BeautifulSoup(dep_specific_text, features="html.parser")
            st.write("💡👇 **Specific example explanation** 👇💡", HTML_WRAPPER.format(soup), unsafe_allow_html=True)
        else:
            summary_deps = check_dependency(False)
            article_deps = check_dependency(True)
            total_unmatched_deps = []
            for summ_dep in summary_deps:
                if not any(summ_dep['identifier'] in art_dep['identifier'] for art_dep in article_deps):
                    total_unmatched_deps.append(summ_dep)
            if total_unmatched_deps:
                for current_drawing_list in total_unmatched_deps:
                    render_dependency_parsing(current_drawing_list)

    # CURRENTLY DISABLED
    # OUTRO/CONCLUSION
    st.header("🤝 Bringing it together")
    st.markdown("We have presented 2 methods that try to detect errors in summaries via post-processing steps. Entity "
                "matching can be used to solve hallucinations, while dependency comparison can be used to filter out "
                "some bad sentences (and thus worse summaries). These methods highlight the possibilities of "
                "post-processing AI-made summaries, but are only a first introduction. As the methods were "
                "empirically tested they are definitely not sufficiently robust for general use-cases.")
    st.markdown("####")
    st.markdown(
        "Below we generate 3 different kind of summaries, and based on the two discussed methods, their errors are "
        "detected to estimate a factualness score. Based on this basic approach, "
        "the best summary (read: the one that a human would prefer or indicate as the best one) "
        "will hopefully be at the top. Summaries with the same scores will get the same rank displayed. We currently "
        "only do this for the example articles (for which the different summmaries are already generated). The reason "
        "for this is that HuggingFace spaces are limited in their CPU memory.")
    st.markdown("####")

    if selected_article != "Provide your own input" and article_text == fetch_article_contents(selected_article):
        with st.spinner("Calculating more summaries and scoring them, this might take a minute or two..."):
            summaries_list = []
            deduction_points = []

            # FOR NEW GENERATED SUMMARY
            for i in range(1 , 4):
                st.session_state.summary_output = fetch_ranked_summaries(selected_article, i)
                _, amount_unmatched = get_and_compare_entities(False)

                summary_deps = check_dependency(False)
                article_deps = check_dependency(True)
                total_unmatched_deps = []
                for summ_dep in summary_deps:
                    if not any(summ_dep['identifier'] in art_dep['identifier'] for art_dep in article_deps):
                        total_unmatched_deps.append(summ_dep)

                summaries_list.append(st.session_state.summary_output)
                deduction_points.append(len(amount_unmatched) + len(total_unmatched_deps))


            # RANKING AND SHOWING THE SUMMARIES
            deduction_points, summaries_list = (list(t) for t in zip(*sorted(zip(deduction_points, summaries_list))))

            cur_rank = 1
            rank_downgrade = 0
            for i in range(len(deduction_points)):
                st.write(f'🏆 Rank {cur_rank} summary: 🏆', display_summary(summaries_list[i]), unsafe_allow_html=True)
                if i < len(deduction_points) - 1:
                    rank_downgrade += 1
                    if not deduction_points[i + 1] == deduction_points[i]:
                        cur_rank += rank_downgrade
                        rank_downgrade = 0